PH= pKa + log( conjugate base/ conjugate acid)
Answer:
[H₃O⁺] = 1.4 × 10⁻⁹ M.
Explanation:
NH₄Cl is a salt that dissolves well in water. The 2.5 M NH₄Cl will give an initial NH₄⁺ concentration of 2.5 M.
NH₃ is a weak base. It combines with water to produce NH₄⁺ and OH⁻. The opposite process can also take place. NH₄⁺ combines with OH⁻ to produce NH₃ and H₂O. The final H₃O⁺ concentration can be found from the OH⁻ concentration. What will be the final OH⁻ concentration?
Let the increase in OH⁻ concentration be x. The initial OH⁻ concentration at room temperature is 10⁻⁷ M.
Construct a RICE table for the equilibrium between NH₃ and NH₄⁺:
.
The
value for ammonia is small. The value of x will be so small that at equilibrium,
and
.
.
.
.
Again,
at room temperature.
At room temperature oxygen,
is present in the gas phase.
A gas is defined as a substance which is characterized by the rapidly movement of molecules which are widely separated. The shape and volume of gas is not definite that is they take on the shape of the container in which it is placed. The gas molecules have minimum inter-nuclear attractions and thus have high kinetic energy.
Thus, the sentences that describes oxygen at room temperature are:
- It has no definite volume and takes the shape of its container.
- Its particles move fast enough to overcome the attraction between them.
- It has more energy than it would be at a cooler temperature as the kinetic energy is directly proportional to the temperature that is kinetic energy increases on increasing the temperature.
O valence electron number is the answer