Answer:
∴ Q = -7.52kCal
Explanation:
Using the formula for specific heat capacity:
Q = mcΔT
where ΔT = change in temperature (final - initial) = (0 - 100)°C = -100°C
m = mass (g) = 75g
c = specific heat capacity = 4.2 J/g°C in water
⇒ Q = 75 × 4.2 × -100
= -31,500J
But 1J - 0.000239kCal
<u>∴ Q = -7.52kCal</u>
<u />
Let me know if I can be of further assistance.
<em><u>the</u></em><em><u> </u></em><em><u>number</u></em><em><u> </u></em><em><u>of</u></em><em><u> </u></em><em><u>neutrons</u></em><em><u> </u></em><em><u>i</u></em><em><u>n</u></em><em><u> </u></em><em><u>aluminium</u></em><em><u> </u></em><em><u>is</u></em><em><u> </u></em><em><u>1</u></em><em><u>4</u></em>
Answer: 1.48 atmosphere
Explanation:
Pressure in kilopascal = 150
Pressure in atmosphere = ?
Recall that 1 atmosphere = 101.325 kilopascal
Hence, 1 atm = 101.325 kPa
Z atm = 150 kPa
To get the value of Z, cross multiply
150 kPa x 1 atm = 101.325 kPa x Z
150 kPa•atm = 101.325 kPa•Z
Divide both sides by 101.325 kPa
150 kPa•atm/101.325 kPa = 101.325 kPa•Z/101.325 kPa
1.48 atm = Z
Thus, 150 kPa is equivalent to 1.48 atmospheres
Answer:
485.76 g of CO₂ can be made by this combustion
Explanation:
Combustion reaction:
2 C₄H₁₀(g) + 13 O₂ (g) → 8 CO₂ (g) + 10 H₂O (g)
If we only have the amount of butane, we assume the oxygen is the excess reagent.
Ratio is 2:8. Let's make a rule of three:
2 moles of butane can produce 8 moles of dioxide
Therefore, 2.76 moles of butane must produce (2.76 . 8)/ 2 = 11.04 moles of CO₂
We convert the moles to mass → 11.04 mol . 44g / 1 mol = 485.76 g