Answer:
distributive property
Step-by-step explanation:
Answer:
B
Step-by-step explanation:
Siri said thats right
Answer: 0.31 or 31%
Let A be the event that the disease is present in a particular person
Let B be the event that a person tests positive for the disease
The problem asks to find P(A|B), where
P(A|B) = P(B|A)*P(A) / P(B) = (P(B|A)*P(A)) / (P(B|A)*P(A) + P(B|~A)*P(~A))
In other words, the problem asks for the probability that a positive test result will be a true positive.
P(B|A) = 1-0.02 = 0.98 (person tests positive given that they have the disease)
P(A) = 0.009 (probability the disease is present in any particular person)
P(B|~A) = 0.02 (probability a person tests positive given they do not have the disease)
P(~A) = 1-0.009 = 0.991 (probability a particular person does not have the disease)
P(A|B) = (0.98*0.009) / (0.98*0.009 + 0.02*0.991)
= 0.00882 / 0.02864 = 0.30796
*round however you need to but i am leaving it at 0.31 or 31%*
If you found this helpful please mark brainliest
A. 48 = 12 + 20 + x
If you use this equation then you can do 12 + 20 = 32 and then you can do 48 - 32 = 16 so x = 16
It takes about 14.55 years for quadruple your money
<em><u>Solution:</u></em>
Given that,
At 10 percent interest, how long does it take to quadruple your money
Rule of 144:
The Rule of 144 will tell you how long it will take an investment to quadruple
Here,
Rate of interest = 10 %
Therefore, number of years to quadruple your money is obtained by dividing 144 by 10
<em><u>Rule of 144 Formula: </u></em>

Where:
N = Number of many years times.
144 = Is the constant variable.
R = Rate of interest.

Thus it takes about 14.4 years for quadruple your money.
<em><u>Another method:</u></em>
If initial amount is $ 1 and it if quadruples it should be $ 4
We have to find the number of years if rate of interest is 10 %
Let "n" be the number of years
Then we can say,



Thus Option D 14.55 years is correct