Answer:
the awnser should be. 165
Answer:
1. 9 < s < 17
2. 5 < MN < 19
3. AD > BD
Step-by-step explanation:
1. The triangle inequality tells you the sum of any two sides of a triangle must exceed the length of the other side. (Some versions say, "must be not less than ..." rather than "must exceed.") In practice, this means two things:
- the sum of the shortest two sides is greater than the length of the longest side
- the length of any side lies between the sum and the difference of the other two sides
Here, we can use the latter fact to write the desired inequality. The difference of the given sides is 13 -4 = 9; their sum is 13 +4 = 17. The third side must lie between 9 and 17. If that side length is designated "s", then ...
9 < s < 17
(If you don't mind a "triangle" that looks like a line segment, you can use ≤ instead of <.)
__
2. Same as (1) using different numbers.
12 -7 < MN < 12 +7
5 < MN < 19
__
3. Side CD is congruent to itself, and side CA is shown congruent to side CB. This means the requirements of the Hinge Theorem are met. That theorem tells you the longer side is opposite the greater angle:
AD > BD
Answer:
30 mph
Step-by-step explanation:
Let d = distance (in miles)
Let t = time (in hours)
Let v = average speed driving <u>to</u> the airport (in mph)
⇒ v + 15 = average speed driving <u>from</u> the airport (in mph)
Using: distance = speed x time

Create two equations for the journey to and from the airport, given that the distance one way is 18 miles:

We are told that the total driving time is 1 hour, so the sum of these expressions equals 1 hour:

Now all we have to do is solve the equation for v:







As v is positive, v = 30 only
So the average speed driving to the airport was 30 mph
(and the average speed driving from the airport was 45 mph)
Answer:
24 3/4
Step-by-step explanation:
multiply 4 1/2 times 1/2 to get your answer..
the answer for this question is cot theta is equal to 24/ 7