Answer:A 2.2kg block of ice slides across a rough floor. Its initial velocity is 2.5m/s and its final velocity is 0.50m/s. How much of the ice block melted as a result of the work done by friction? (Latent Heat of water is 3.3*10^5J/kg)
Explanation:
Explanation:
Transparent objects do not form shadows. The light passes completely from the transparent objects thus these objects will not form shadow. ... In such objects, the light gets refracted thus, such objects forms shadow. The refraction is also the reason why we can see such objects.
Answer:
20 N/m
Explanation:
From the question,
The ball-point pen obays hook's law.
From hook's law,
F = ke............................ Equation 1
Where F = Force, k = spring constant, e = compression.
Make k the subject of the equation
k = F/e........................ Equation 2
Given: F = 0.1 N, e = 0.005 m.
Substitute these values into equation 2
k = 0.1/0.005
k = 20 N/m.
Hence the spring constant of the tiny spring is 20 N/m
Answer:
The last option is the only correct one if you like to multiply
The second last option is good if you like to divide.
Explanation:
Each fraction in the last two options has a value of 1
example
dividing by 1
15 cm /(100 cm/ 1 m) = 0.15 m 0.15 m / (1000 m/ 1km) = 0.00015 km
and
multiplying by 1
15 cm(1 m / 100cm) = 0.15 m 0.15m(1 km/1000m) = 0.00015 km
only one of the two fractions in each of the top two options has a value of 1.
The quantity of heat must be removed is 1600 cal or 1,6 kcal.
<h3>Explanation : </h3>
From the question we will know if the condition of ice is at the latent point. So, the heat level not affect the temperature, but it can change the object existence. So, for the formula we can use.
If :
- Q = heat of latent (cal or J )
- m = mass of the thing (g or kg)
- L = latent coefficient (cal/g or J/kg)
<h3>Steps : </h3>
If :
- m = mass of water = 20 g => its easier if we use kal/g°C
- L = latent coefficient = 80 cal/g
Q = ... ?
Answer :
So, the quantity of heat must be removed is 1600 cal or 1,6 kcal.
<u>Subject : Physics </u>
<u>Subject : Physics Keyword : Heat of latent</u>