Force = mass x acceleration
force = 2500kg x (20m/s / 10m/s)
force = 2500kg x 2m/s^2
force = 5000kg m/s^2 = 5kN
i hope this is right (^^)
Answer:
9] V = D ÷ T
Take any distance value from the graph and its relevant time.
V = 4 ÷ 2
V = 2 m/s
[You will notice that any distance values with its time will give you 2 m/s as its speed. This means that speed is constant throughout.]
10] Take the distance value and its time for the highest peak of B.
V = 20 ÷ 2
V = 10 m/s
The answer is; C
In particular points in the earth’s surface, underground water is naturally heated to steam that can be harness for geothermal energy. The steam that ejects from the ground with high kinetic energy can be used to turn turbines that generate electricity. The underground water is usually heated by the hot rocks beneath that are subjected to the immense heat of magma or the enormous pressure of overlying crust.
Answer:
See the attached image and the explanation below
Explanation:
We must draw a schematic of the described problem, after the sketch it is necessary to make a free body diagram, at the time before and after cutting the cord.
These free body diagrams can be seen in the attached image.
First we perform a sum of forces on the x & y axes before cutting the cord, to be able to find the T tension of the wire. (This analysis can be seen in the attached image).
In this way we get the T-wire tension equation, before cutting.
Now we make another free body diagram, for the moment when the wire is cut (see in the attached diagram).
It is important to clarify that when the cord is cut, the system will no longer be in statically, therefore newton's second law will be used for summation of forces which will be equal to the product of mass by acceleration.
Finally with equations 1 and 2 we can find the K ratio.