In an atom of hydrogen the orbit radius is given by the formula:
r = n² · α₀
where:
n = number of orbit = 15
α₀ = Bohr radius (innermost radius) = 0.529 Â
Since d = 2 · r, we can write:
d = n² · d₀
= 15² · 1.06
= 238.5 Â
Hence, the <span>diameter of the fifteenth orbit of the hydrogen atom is 238.5 </span>Â.
Answer: I believe this may be Infinity and beyond...i hope this helps you and i apologize if i am wrong.
East component: 3.9 m/s
South component: 1.8 m/s
Explanation:
We have to resolve the velocity vector along the east and south axis.
Taking east as positive x-direction and south as positive y-direction, the components of the velocity are given by:

where
v = 4.3 m/s is the magnitude of the velocity
is the angle between the direction of the velocity and of the x-axis
Substituting into the equations, we find:
East component:

South component:

Learn more about vector components:
brainly.com/question/2678571
#LearnwithBrainly
Answer:
Zero
Explanation:
Average velocity is given by:

where
d is the displacement of the trip
t is the time it takes for the trip to complete
In this problem, the net displacement of the swimmer is zero. In fact:
- First, he swims 30.0 m in the north direction
- Then, he travels back (-30.0 m) in the south direction, to the starting position
Since the final position is equal to the starting position, the displacement is zero:
d = 0
And therefore, the average velocity is also zero.
Answer:
10.347 minutes.
Explanation:
According to F = ma, she exerts force on camera of the magnitude
F = 0.67Kg*12m/
= 8.04N, assuming it took her one second to accelerate camera to 12m/s, then by newtons third law, which says every action has equal and opposite reaction , the camera exerts the same amount of force on the astronaut which gives her acceleration of a =
.
and velocity of V = 0.1130801680m/s.
at this velocity , the astronaut has to cover the distance of 70.2 meters, it will take her 620.7985075s = 10.347 min to get to the shuttle (using S = vt).