Exothermich cools and endo heats so it heats
time should you wait between pushes is 2.83 sec.
the question is incomplete, full statement is-
A 24 kg child sits on a 2.0-m-long rope swing. You are going to give the child a small, brief push at regular intervals. If you want to increase the amplitude of her motion as quickly as possible, how much time should you wait between pushes?
<h3>What is Amplitude?</h3>
In physics, amplitude refers to the greatest displacement or distance that a point on a vibrating body or wave may move relative to its equilibrium location. It is equivalent to the vibration path's half-length.
regular interval - at similarly spaced intervals: having the same interval of time between occurrences From 4 a.m. to midnight, the buses operate at regular intervals. The boards are positioned at regular intervals, with an equal amount of space between each.
The length of swing, l = 2.1 m
The time between the pushes is nothing but the Time period
and is given by the formula,

= 2 * 3.14 ( 2.0/ 9.8 ) ^ (1/2)
= 2.83 sec
to learn more about Amplitude go to - brainly.com/question/3613222
#SPJ4
Explanation:
Show that the motion of a mass attached to the end of a spring is SHM
Consider a mass "m" attached to the end of an elastic spring. The other end of the spring is fixed
at the a firm support as shown in figure "a". The whole system is placed on a smooth horizontal surface.
If we displace the mass 'm' from its mean position 'O' to point "a" by applying an external force, it is displaced by '+x' to its right, there will be elastic restring force on the mass equal to F in the left side which is applied by the spring.
According to "Hook's Law
F = - Kx ---- (1)
Negative sign indicates that the elastic restoring force is opposite to the displacement.
Where K= Spring Constant
If we release mass 'm' at point 'a', it moves forward to ' O'. At point ' O' it will not stop but moves forward towards point "b" due to inertia and covers the same displacement -x. At point 'b' once again elastic restoring force 'F' acts upon it but now in the right side. In this way it continues its motion
from a to b and then b to a.
According to Newton's 2nd law of motion, force 'F' produces acceleration 'a' in the body which is given by
F = ma ---- (2)
Comparing equation (1) & (2)
ma = -kx
Here k/m is constant term, therefore ,
a = - (Constant)x
or
a a -x
This relation indicates that the acceleration of body attached to the end elastic spring is directly proportional to its displacement. Therefore its motion is Simple Harmonic Motion.
Answer:
Los 0.0416km
esto se debe a que transponemos la fórmula acelerada y obtenemos Distancia = velocidad × tiempo
también recuerda transponer los segundos a horas viendo que la velocidad es por hora
También tenga en cuenta que no hablo español, así que esto fue extremadamente difícil
culto