![\bf f(x)=(x-6)e^{-3x}\\\\ -----------------------------\\\\ \cfrac{dy}{dx}=1\cdot e^{-3x}+(x-6)-3e^{-3x}\implies \cfrac{dy}{dx}=e^{-3x}[1-3(x-6)] \\\\\\ \cfrac{dy}{dx}=e^{-3x}(19-3x)\implies \cfrac{dy}{dx}=\cfrac{19-3x}{e^{3x}}](https://tex.z-dn.net/?f=%5Cbf%20f%28x%29%3D%28x-6%29e%5E%7B-3x%7D%5C%5C%5C%5C%0A-----------------------------%5C%5C%5C%5C%0A%5Ccfrac%7Bdy%7D%7Bdx%7D%3D1%5Ccdot%20e%5E%7B-3x%7D%2B%28x-6%29-3e%5E%7B-3x%7D%5Cimplies%20%5Ccfrac%7Bdy%7D%7Bdx%7D%3De%5E%7B-3x%7D%5B1-3%28x-6%29%5D%0A%5C%5C%5C%5C%5C%5C%0A%5Ccfrac%7Bdy%7D%7Bdx%7D%3De%5E%7B-3x%7D%2819-3x%29%5Cimplies%20%5Ccfrac%7Bdy%7D%7Bdx%7D%3D%5Ccfrac%7B19-3x%7D%7Be%5E%7B3x%7D%7D)
set the derivative to 0, solve for "x" to get any critical points
keep in mind, setting the denominator to 0, also gives us critical points, however, in this case, the denominator will never be 0, so... no critical points from there
there's only 1 critical point anyway, and do a first-derivative test on it, check a number before it and after it, to see what sign the derivative has, and thus, whether the graph is going up or down, to check for any extrema
Answer:
4/12
Step-by-step explanation:
413,114
btw there cant be 11 hundreds or 13 thousands
so its this
Answer:
Step-by-step explanation:
√4 = 2, √36 = 6, √49 = 7
only √2 is irrational!
Answer:
S.A. = 981.7 ft^2
Step-by-step explanation:
radius = 25 ft
S.A. = 1/2πr2
S.A. = 1/2π(25)^2
S.A. = 981.7