1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
balu736 [363]
3 years ago
9

Two point charges of +2.0 μC and -6.0 μC are located on the x-axis at x = -1.0 cm and x 12) = +2.0 cm respectively. Where should

a third charge of +3.0-μC be placed on the +x-axis so that the potential at the origin is equal to zero?
Physics
1 answer:
Lemur [1.5K]3 years ago
3 0

Answer:

 x = 0.006 m

Explanation:

The potential at one point is given by

          V = k ∑ q_{i} / r_{i}

remember that the potential is to scale, let's apply to our case

          V = k (q₁ / x₁ + q₂ / x₂ + q₃ / x)

in this case they indicate that the potential is zero

          0 = k (2 10⁻⁶ / (- 1 10⁻²) + (-6 10⁻⁶) / 2 10⁻² + ​​3 10⁻⁶ / x)

         3 / x = + 2 / 10⁻² + ​​3 / 10⁻²

         3 / x = 500

          x = 3/500

          x = 0.006 m

You might be interested in
Rita conducts an experiment on how the amount of precipitation each fall affects
hodyreva [135]

Answer:

Explanation:

As spring season is a yearly phenomenon so, Rita should organize her data on yearly basis. Firstly, she should plan the procedure of her experiment and collect the data according to it. Secondly, identify the attribute of each object of her experiment. Thirdly, she can organize and segregate her data in tabular form, graphical form or diagrammatically.

5 0
3 years ago
What type of energy transformation occurs when a light bulb is turned on?
Vikentia [17]
Electical energy is transformed into heat and light energy
4 0
3 years ago
Read 2 more answers
A proton is projected toward a fixed nucleus of charge Ze with velocity vo. Initially the two particles are very far apart. When
11111nata11111 [884]

Answer:

The value is R_f =  \frac{4}{5}  R

Explanation:

From the question we are told that

   The  initial velocity of the  proton is v_o

    At a distance R from the nucleus the velocity is  v_1 =  \frac{1}{2}  v_o

    The  velocity considered is  v_2 =  \frac{1}{4}  v_o

Generally considering from initial position to a position of  distance R  from the nucleus

 Generally from the law of energy conservation we have that  

       \Delta  K  =  \Delta P

Here \Delta K is the change in kinetic energy from initial position to a  position of  distance R  from the nucleus , this is mathematically represented as

      \Delta K  =  K__{R}} -  K_i

=>    \Delta K  =  \frac{1}{2}  *  m  *  v_1^2  -  \frac{1}{2}  *  m  *  v_o^2

=>    \Delta K  =  \frac{1}{2}  *  m  * (\frac{1}{2} * v_o )^2  -  \frac{1}{2}  *  m  *  v_o^2

=>    \Delta K  =  \frac{1}{2}  *  m  * \frac{1}{4} * v_o ^2  -  \frac{1}{2}  *  m  *  v_o^2

And  \Delta  P is the change in electric potential energy  from initial position to a  position of  distance R  from the nucleus , this is mathematically represented as

          \Delta P =  P_f - P_i

Here  P_i is zero because the electric potential energy at the initial stage is  zero  so

             \Delta P =  k  *  \frac{q_1 * q_2 }{R}  - 0

So

           \frac{1}{2}  *  m  * \frac{1}{4} * v_o ^2  -  \frac{1}{2}  *  m  *  v_o^2 =   k  *  \frac{q_1 * q_2 }{R}  - 0

=>        \frac{1}{2}  *  m  *v_0^2 [ \frac{1}{4} -1 ]  =   k  *  \frac{q_1 * q_2 }{R}

=>        - \frac{3}{8}  *  m  *v_0^2  =   k  *  \frac{q_1 * q_2 }{R} ---(1 )

Generally considering from initial position to a position of  distance R_f  from the nucleus

Here R_f represented the distance of the proton from the nucleus where the velocity is  \frac{1}{4} v_o

     Generally from the law of energy conservation we have that  

       \Delta  K_f  =  \Delta P_f

Here \Delta K is the change in kinetic energy from initial position to a  position of  distance R  from the nucleus  , this is mathematically represented as

      \Delta K_f   =  K_f -  K_i

=>    \Delta K_f  =  \frac{1}{2}  *  m  *  v_2^2  -  \frac{1}{2}  *  m  *  v_o^2

=>    \Delta K_f  =  \frac{1}{2}  *  m  * (\frac{1}{4} * v_o )^2  -  \frac{1}{2}  *  m  *  v_o^2

=>    \Delta K_f  =  \frac{1}{2}  *  m  * \frac{1}{16} * v_o ^2  -  \frac{1}{2}  *  m  *  v_o^2

And  \Delta  P is the change in electric potential energy  from initial position to a  position of  distance R_f  from the nucleus , this is mathematically represented as

          \Delta P_f  =  P_f - P_i

Here  P_i is zero because the electric potential energy at the initial stage is  zero  so

             \Delta P_f  =  k  *  \frac{q_1 * q_2 }{R_f }  - 0      

So

          \frac{1}{2}  *  m  * \frac{1}{8} * v_o ^2  -  \frac{1}{2}  *  m  *  v_o^2 =   k  *  \frac{q_1 * q_2 }{R_f }

=>        \frac{1}{2}  *  m  *v_o^2 [-\frac{15}{16} ]  =   k  *  \frac{q_1 * q_2 }{R_f }

=>        - \frac{15}{32}  *  m  *v_o^2 =   k  *  \frac{q_1 * q_2 }{R_f } ---(2)

Divide equation 2  by equation 1

              \frac{- \frac{15}{32}  *  m  *v_o^2 }{- \frac{3}{8}  *  m  *v_0^2  } }   =  \frac{k  *  \frac{q_1 * q_2 }{R_f } }{k  *  \frac{q_1 * q_2 }{R } }}

=>           -\frac{15}{32 } *  -\frac{8}{3}   =  \frac{R}{R_f}

=>           \frac{5}{4}  =  \frac{R}{R_f}

=>             R_f =  \frac{4}{5}  R

   

7 0
3 years ago
A car company wants to ensure its newest model can stop in less than 450 ft when traveling at 60 mph. If we assume constant dece
seraphim [82]

Answer:

The value of acceleration that accomplishes this is 8.61 ft/s² .

Explanation:

Given;

maximum distance to be traveled by the car when the brake is applied, d = 450 ft

initial velocity of the car, u = 60 mph = (1.467 x 60) = 88.02 ft/s

final velocity of the car when it stops, v = 0

Apply the following kinematic equation to solve for the deceleration of the car.

v² = u² + 2as

0 = 88.02² + (2 x 450)a

-900a = 7747.5204

a = -7747.5204 / 900

a = -8.61 ft/s²

|a| = 8.61 ft/s²

Therefore, the value of acceleration that accomplishes this is 8.61 ft/s² .

4 0
3 years ago
You push your friend, whose mass is 54kg, down a hill so she can go sledding. Her acceleration is 3m/s2. Calculate the amount of
Alecsey [184]

Answer:

18 newtons

Explanation:

Divide weight by speed

3 0
3 years ago
Other questions:
  • An electric buzzer is activated, then sealed inside a glass chamber. When all of the air is pumped out of the chamber, how is th
    12·1 answer
  • If your front lawn is 21.0 feet wide and 20.0 feet long, and each square foot of lawn accumulates 1350 new snowflakes every minu
    13·1 answer
  • A cart of mass m moving right at speed v with respect to the track collides with a cart of mass 0.7m moving left.
    8·2 answers
  • Firemen use a high-pressure hose to shoot a stream of water at a burning building. The water has a speed of 25.0 m/s as it leave
    14·1 answer
  • Which of the following element has seven total valence electrons? Your answer: argon helium oxygen bromine
    8·1 answer
  • Write short note on fulcrum​
    12·1 answer
  • Sound travels through air at 343 m/s at 20 °C. A bat emits an ultrasonic squeak and hears the echo 0.05 second later . How far a
    7·1 answer
  • Write any two uses of a wedge.​
    9·1 answer
  • How many non square lie be 2² and 3²?​
    15·1 answer
  • Assume your mass is 84 kg. The acceleration due to gravity is 9.8 m/s 2 . How much work against gravity do you do when you climb
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!