Answer:
Explanation:
<u>2-D Projectile Motion</u>
In 2-D motion, there are two separate components of the acceleration, velocity and displacement. The horizontal component has zero acceleration, while the acceleration in the vertical direction is always the acceleration due to gravity. The basic formulas for this type of movement are
The projectile is fired in such a way that its horizontal range is equal to three times its maximum height. We need to find the angle \theta at which the object should be launched. The range is the maximum horizontal distance reached by the projectile, so we establish the base condition:
Using the formulas for
Simplifying
Dividing by
Rearranging
Answer:
220 ohms
Explanation:
I = V / R
0.25 = 110 / R
R = 110 / 0.25
R = 440 ohms
Equivalent resistance = 440 ohms
Resistance of single light bulb = Equivalent resistance / number of bulbs
= 440 / 2
= 220 ohms
<span>Answer:
The moments of inertia are listed on p. 223, and a uniform cylinder through its center is:
I = 1/2mr2
so
I = 1/2(4.80 kg)(.0710 m)2 = 0.0120984 kgm2
Since there is a frictional torque of 1.20 Nm, we can use the angular equivalent of F = ma to find the angular deceleration:
t = Ia
-1.20 Nm = (0.0120984 kgm2)a
a = -99.19 rad/s/s
Now we have a kinematics question to solve:
wo = (10,000 Revolutions/Minute)(2p radians/revolution)(1 minute/60 sec) = 1047.2 rad/s
w = 0
a = -99.19 rad/s/s
Let's find the time first:
w = wo + at : wo = 1047.2 rad/s; w = 0 rad/s; a = -99.19 rad/s/s
t = 10.558 s = 10.6 s
And the displacement (Angular)
Now the formula I want to use is only in the formula packet in its linear form, but it works just as well in angular form
s = (u+v)t/2
Which is
q = (wo+w)t/2 : wo = 1047.2 rad/s; w = 0 rad/s; t = 10.558 s
q = (125.7 rad/s+418.9 rad/s)(3.5 s)/2 = 952.9 radians
But the problem wanted revolutions, so let's change the units:
q = (5528.075087 radians)(revolution/2p radians) = 880. revolutions</span>
Answer:
A) Its density will decrease
Explanation:
When an object is heated, its volume increases. This is due to the fact that the particles in the medium vibrate more (if it is a solid) or they move more (if it is a liquid or a gas), therefore they tend to occupy a larger space.
At the same time, the mass of the object does not change, because the mass just represents the amount of matter contained in the object, so it does not increase/decrease at different temperatures.
The density of an object is defined as the ratio between the mass (m) and the volume (V):
We said that the mass remains unchanged while the volume increases: since the density is inversely proportional to the volume, this means that the density decreases.
The work done by the normal force n when the box slides down a frictionless incline and gaining speed is zero.
<h3>What is normal force?</h3>
The force of contact is called the normal force. When the two surfaces are in contact with each other, then the normal force acts.
This force is applied by the solid bodies on each other in order to prevent the passing through each other.
A box slides down a frictionless incline, gaining speed. For this box, the value of work done by normal force has to be found out. Let's analyze the given condition.
- The body is gaining the speed, which means there is a change in kinetic energy.
- The change in kinetic energy is equal to the work done.
- The friction force is the product of coefficient of the friction and normal force.
- The friction force for the given case is zero. Thus, the normal force must be equal to the zero.
Thus, the work done by the normal force n when the box slides down a frictionless incline and gaining speed is zero.
Learn more about the normal force here;
brainly.com/question/10941832