Answer:
9.6 km/h
Explanation:
20 minutes=1/3 minute.
The speed of the bicycle: 3.2:1/3=9.6 km/h.
Answer: 9.6 km/h
The total momentum of the players after collision is 130 kgm/s.
The given parameters:
- <em>Initial momentum of the returner, </em>
<em> = 0 kgm/s</em> - <em>The initial momentum of the diving player, </em>
<em> = 130 kgm/s</em>
The total momentum of the players after collision is determined by applying the principle of conservation of linear momentum as follows;

Thus, the total momentum of the players after collision is 130 kgm/s.
Learn more about conservation of linear momentum here: brainly.com/question/7538238
<span>From the point of view of the astronaut, he travels between planets with a speed of 0.6c. His distance between the planets is less than the other bodies around him and so by applying Lorentz factor, we have 2*</span>√1-0.6² = 1.6 light hours. On the other hand, from the point of view of the other bodies, time for them is slower. For the bodies, they have to wait for about 1/0.6 = 1.67 light hours while for him it is 1/(0.8) = 1.25 light hours. The remaining distance for the astronaut would be 1.67 - 1.25 = 0.42 light hours. And then, light travels in all frames and so the astronaut will see that the flash from the second planet after 0.42 light hours and from the 1.25 light hours is, 1.25 - 0.42 = 0.83 light hours or 49.8 minutes.
Answer:
The helicopter uses 35 gallons to fly for 5 hours.
Explanation:
The amount of gas that a helicopter uses for flying varies directly proportional to the number of hours spent flying.
g ∝ T
where g represents amount of gas and T time of flight.
Then,

The helicopter files 4 hours and uses 28 gallons of fuel.
Here, g₁= 28 gallons, T₁=4 hours
g₂=?, T₂=5 hours.


⇒28×5= g₂×4
⇒ g₂×4=28×5

gallons
The helicopter uses 35 gallons to fly for 5 hours.