Answer: 363 Ω.
Explanation:
In a series AC circuit excited by a sinusoidal voltage source, the magnitude of the impedance is found to be as follows:
Z = √((R^2 )+〖(XL-XC)〗^2) (1)
In order to find the values for the inductive and capacitive reactances, as they depend on the frequency, we need first to find the voltage source frequency.
We are told that it has been set to 5.6 times the resonance frequency.
At resonance, the inductive and capacitive reactances are equal each other in magnitude, so from this relationship, we can find out the resonance frequency fo as follows:
fo = 1/2π√LC = 286 Hz
So, we find f to be as follows:
f = 1,600 Hz
Replacing in the value of XL and Xc in (1), we can find the magnitude of the impedance Z at this frequency, as follows:
Z = 363 Ω
Answer:
The maximum amplitude (
) will be 7.96 V.
Explanation:
We know, for distortion free operation, the slew rate (S) of an OPAMP is written as

where '
' is the highest frequency signal.
Therefore, from the above equation we can write,

For those seeking for the answer, its a source of electrical energy.
Answer:
photoelectric effect
Explanation:
When the energy from photons is absorbed by matter, the matter can emit electrons. This process is called the photoelectric effect. The photoelectric effect is a property of light that is not explained by the theory that light is a wave.
Answer:

Explanation:
Let say the empty wagon has mass "M"
now by newton's II Law we will have

now it is given that empty wagon is pulled with acceleration 1.4 m/s/s
now we will have

now a child of mass three times the mass of wagon is sitting on the empty wagon
so here we have


so we have
