Answer:
2.78 m
Explanation:
At the peak, the velocity is 0.
Given:
a = -1.6 m/s²
v₀ = 2.98 m/s
v = 0 m/s
x₀ = 0 m
Find:
x
v² = v₀² + 2a(x - x₀)
(0 m/s)² = (2.98 m/s)² + 2(-1.6 m/s²) (x - 0 m)
x = 2.775 m
Rounded to 3 sig-figs, the astronaut halloweener reaches a maximum height of 2.78 meters.
Answer:
144 ft
Explanation:
h(t) = -16t² + 64t + 80
The maximum height is at the vertex. We can find the vertex of a parabola using -b / (2a):
t = -64 / (2×-16)
t = 2
The vertex is at 2 seconds. The height of the stone at this time is:
h(2) = -16(2)² + 64(2) + 80
h(2) = 144
The maximum height is 144 feet.
Answer:
No, it is independent
Explanation:
As we know that car is moving horizontally
so the vertical component of the speed is zero initially
so in order to hit the ground we know that

so here we know that

on solving above equation for time

so we will say that it will not depends on the initial horizontal speed
Answer: A. 200J
Therefore, the workdone by the heat engine is 200J
Explanation:
Given ;
The efficiency of the heat engine is E = 20% = 0.2
Heat loss L= 800J
For an heat engine the efficiency is measured by the amount of workdone by the heat engine when compared to the heat generated.
Efficiency E = workdone/heat generated × 100%
Heat generated G= workdone W + heat loss L
G = W + L
According to the question.
W = 20% of G
W = 0.2G ......1
L = 80% of G
L = 0.8G
G = L/0.8 ......2
Substituting equation 2 to 1
W = 0.2(L/0.8)
And L = 800J
W = 0.2(800/0.8)
W = 200J
Therefore, the workdone by the heat engine is 200J
Answer:
666.6 seconds
Explanation:
if he runs at 3m/sec he will achieve the goal of 2000m in 666.6 seconds. just divide - 3/2000.
note we have changed 2km to 2000metres