Dropping it on a hard surface.
Answer:
Explanation:
All the rest of the information is extraneous. The only 2 things you have to know are
d = 20 km
t = 8 minutes = 8/60 hours = 0.13333333
So the speed is s = d/t
s = 20/0.1333333 = 150 km/hour
Note: you have not specified what units the speed is. I suppose you could answer 20/8 = 2.5 km/min
Average velocity = (800+1600)/(4+10)
= 171.42m/s
Answer:
8. 2.75·10^-4 s^-1
9. No, too much of the carbon-14 would have decayed for radiation to be detected.
Explanation:
8. The half-life of 42 minutes is 2520 seconds, so you have ...
1/2 = e^(-λt) = e^(-(2520 s)λ)
ln(1/2) = -(2520 s)λ
-ln(1/2)/(2520 s) = λ ≈ 2.75×10^-4 s^-1
___
9. Reference material on carbon-14 dating suggests the method is not useful for time periods greater than about 50,000 years. The half-life of C-14 is about 5730 years, so at 65 million years, about ...
6.5·10^7/5.73·10^3 ≈ 11344
half-lives will have passed. Whatever carbon 14 may have existed at the time will have decayed completely to nothing after that many half-lives.