Answer:
0.9375
divide the numerator by the denominator
ex. 15 divided by 16
Step-by-step explanation:
Principle: Law of Exponents - Combination of product to a power & power to a power. The first is when raising a product of two integers to a power, the power is distributed to each factor. In equation it is,
(xy)^a = (x^a)(y^a)
The latter is when raising the base with a power to a power, the base will remain the same and the powers will be multiplied. In equation it is,
(x^a)(x^b) = x^ab
Check:
f(x) = 5*(16)^.33x = 5*(8*2)^0.33x = 5*(8^0.33x)(2^0.33x) = 5*(2^x)*(2^0.33x) = 5*(2^1.33x)
f(x) = 2.3*(8^0.5x) = 2.3*(4*2)^0.5x = 2.3*(2^x)(2^0.5x) = 2.3*(2^1.5x)
f(x) = 81^0.25x = 3^x
f(x) = 0.75*(9*3)^0.5x = 0.75*(3^x)*(3^0.5x) = 0.75*3^1.5x
f(x) = 24^0.33x = (8*3)^0.33x = (2^x)*(3^0.33x)
Therefore, the answer is third equation.
<em>ANSWER: f(x) = 81^0.25x = 3^x</em>
Answer:
LIMIT
The policy will pay for up to
$100,000 of damage to
another person's property.
The policy will pay only
$100 per incident for a
tow truck
DEDUCTIBLE
The policyholder must pay
the first $1,000 of repair
expenses before insurance
will pay for anything,
PREMIUM
The policy offers coverage
for a cost of $178 per month
The policyholder must
pay $500 semiannually
to the insurance provider
Step-by-step explanation:
LIMIT is the maximum amount an insurer will pay toward a covered claim
DEDUCTIBLE is the amount paid out of pocket toward a covered claim
PREMIUM is the amount paid regularly to keep the policy in force.
Answer:
Obviously its x=3-23=-20.
The <em>speed</em> intervals such that the mileage of the vehicle described is 20 miles per gallon or less are: v ∈ [10 mi/h, 20 mi/h] ∪ [50 mi/h, 75 mi/h]
<h3>How to determine the range of speed associate to desired gas mileages</h3>
In this question we have a <em>quadratic</em> function of the <em>gas</em> mileage (g), in miles per gallon, in terms of the <em>vehicle</em> speed (v), in miles per hour. Based on the information given in the statement we must solve for v the following <em>quadratic</em> function:
g = 10 + 0.7 · v - 0.01 · v² (1)
An effective approach consists in using a <em>graphing</em> tool, in which a <em>horizontal</em> line (g = 20) is applied on the <em>maximum desired</em> mileage such that we can determine the <em>speed</em> intervals. The <em>speed</em> intervals such that the mileage of the vehicle is 20 miles per gallon or less are: v ∈ [10 mi/h, 20 mi/h] ∪ [50 mi/h, 75 mi/h].
To learn more on quadratic functions: brainly.com/question/5975436
#SPJ1