The cost of 0.5 kg of bananas is 393.60 Colones as per the given conversion rates
Conversion rate of 1 USD to Costa Rican Colones = 518 Colones
The conversion rate of kg to pounds given in the question: 1 kg = 2.2025 lbs
Cost of one pound of bananas = $0.69
Bananas required to be purchased = 0.5kg
Converting 0.5kg bananas to pounds = 0.5*2.2025 = 1.10125 pounds
Cost of 1.10125 pound of bananas in dollars = 1.10125*0.69 = 0.7598
Cost of 1.1025 pounds of bananas in Colones = 0.7598*518 = 393.60 Colones
Hence, the cost is 393.60
Therefore, the cost of 0.5 kg bananas in Colones is 393.60 Colones
Learn more about conversion rate:
brainly.com/question/2274822
#SPJ1
The answer is 66.
66 * 3 = 198
66 * 5 = 330
9514 1404 393
Answer:
"complete the square" to put in vertex form
Step-by-step explanation:
It may be helpful to consider the square of a binomial:
(x +a)² = x² +2ax +a²
The expression x² +x +1 is in the standard form of the expression on the right above. Comparing the coefficients of x, we see ...
2a = 1
a = 1/2
That means we can write ...
(x +1/2)² = x² +x +1/4
But we need x² +x +1, so we need to add 3/4 to the binomial square in order to make the expressions equal:

_____
Another way to consider this is ...
x² +bx +c
= x² +2(b/2)x +(b/2)² +c -(b/2)² . . . . . . rewrite bx, add and subtract (b/2)²*
= (x +b/2)² +(c -(b/2)²)
for b=1, c=1, this becomes ...
x² +x +1 = (x +1/2)² +(1 -(1/2)²)
= (x +1/2)² +3/4
_____
* This process, "rewrite bx, add and subtract (b/2)²," is called "completing the square"—especially when written as (x-h)² +k, a parabola with vertex (h, k).
Answer:
15.3 dollars
Step-by-step explanation:
13.50 + (.09 x 20 = 1.8)
13.50 + 1.8
Answer: when you rotate the triangle 180 degrees the new points would be (-1,-2), (-1,-4), and (-3,-3).
Step-by-step explanation:
You simply flip the graph 180 degrees. Not that hard.