Copper would be the last to melt because it has the highest melting point!
Answer:
Explanation:
Similarities.
Both Ionic and covalents bond produce exothermic reactions.
They are both neutral.in Ionic bonds, the two opposite charge will terminate each other and in covalent, the neutral molecules tend to share electrons.
Difference
Ionic bonds have high polarity while covalent have low.
Ionic bonds have no definite shape, covalent have.
Ionic have high melting points, covalent have low.
Io ic have high boiling point, covalents have low.
Answer:
ΔS° = 180.5 J/mol.K
Explanation:
Let's consider the following reaction.
4 NH₃(g) + 5 O₂(g) → 4 NO(g) + 6 H₂O(g)
The standard molar entropy of the reaction (ΔS°) can be calculated using the following expression.
ΔS° = ∑np × S°p - ∑nr × S°r
where,
ni are the moles of reactants and products
S°i are the standard molar entropies of reactants and products
ΔS° = 4 mol × S°(NO(g)) + 6 × S°(H₂O(g)) - 4 mol × S°(NH₃(g)) - 5 mol × S°(O₂(g))
ΔS° = 4 mol × 210.8 J/K.mol + 6 × 188.8 j/K.mol - 4 mol × 192.5 J/K.mol - 5 mol × 205.1 J/K.mol
ΔS° = 180.5 J/K
This is the change in the entropy per mole of reaction.
The balanced reaction equation for the reaction between CH₃OH and O₂ is
2CH₃OH(l) + 3O₂(g) → 2CO₂(g) + 4H₂O(l)
Initial moles 12 24
Reacted moles 12 18
Final moles - 6 12 24
The stoichiometric ratio between CH₃OH and O₂ is 2 : 3
Hence,
reacted moles of O₂ = reacted moles of CH₃OH x (3/2)
= 12 mol x 3 / 2
= 18 mol
All of CH₃OH moles react with O₂.
Hence, the limiting agent is CH₃OH.
Excess reagent is O₂.
Amount of moles of excess reagent left = 24 - 18 mol = 6 mol