Answer:
5446.8 J
Explanation:
From the question given above, the following data were obtained:
Mass (M) = 50 g
Initial temperature (T₁) = 70 °C
Final temperature (T₂) = 192.4 °C
Specific heat capacity (C) = 0.89 J/gºC
Heat (Q) required =?
Next, we shall determine the change in the temperature. This can be obtained as follow:
Initial temperature (T₁) = 70 °C
Final temperature (T₂) = 192.4 °C
Change in temperature (ΔT) =?
ΔT = T₂ – T₁
ΔT = 192.4 – 70
ΔT = 122.4 °C
Finally, we shall determine the heat required to heat up the block of aluminum as follow:
Mass (M) = 50 g
Specific heat capacity (C) = 0.89 J/gºC
Change in temperature (ΔT) = 122.4 °C
Heat (Q) required =?
Q = MCΔT
Q = 50 × 0.89 × 122.4
Q = 5446.8 J
Thus, the heat required to heat up the block of aluminum is 5446.8 J
Answer: The bond formed between the elements will be ionic bond.
Explanation: We are given two elements having electronic configurations:
Element 1: 
Element 2: 
Element 1 can easily loose 1 electron to attain stable electronic configuration and Element 2 can accept 1 electron to attain stable electronic configuration.
For these elements, there will be a complete transfer of electron from Element 1 to Element 2. Hence, this will form a ionic bond.
From the configuration, Element 1 is Lithium and Element 2 is Fluoride. So, the compound is LiF.
Explanation:
Given that,
Mass number, A = 302
Atomic number, Z = 119
We know that, atomic number = no of protons
Protons = 119
Mass no. = No. of neutrons + No. of protons
302 = No. of neutrons + 119
No. of neutrons = 302 - 119
= 183
No. of electrons = No. of protons
= 119
Assuming that the reactants are:
(NH4)2SO4 (aq) + Ba(NO3)2 (aq)
and the products are:
BaSO4 (s) + 2NH4NO3 (aq),
then you will have to determine which product is insoluble. You should have access to solubility rules to help you determine this.
According to the solubility rules, the following elements are considered insoluble when paired with SO4:
Sr^2+, Ba^2+, Pb^2+, Ag^2+, and Ca^2+
Therefore, the precipitate will be BaSO4 (s).
Accelerating, because it’s going from standing still to running, so the speed increases