Answer:
Explanation:
The lewis structure (indicating all the atoms and patterns provided as hint in the question) of glycine can be seen in the attachment below. While the chemical structure of glycine can be seen below
H
|
H₂N - C - C =O
| \
H OH
The structure (of glycine) above provides a "fair idea" of how the lewis structure will be.
Answer: 0.4 moles
Explanation:
Given that:
Volume of gas V = 11L
(since 1 liter = 1dm3
11L = 11dm3)
Temperature T = 25°C
Convert Celsius to Kelvin
(25°C + 273 = 298K)
Pressure P = 0.868 atm
Number of moles N = ?
Note that Molar gas constant R is a constant with a value of 0.00821 atm dm3 K-1 mol-1
Then, apply ideal gas equation
pV = nRT
0.868atm x 11dm3 = n x (0.00821 atm dm3 K-1 mol-1 x 298K)
9.548 atm dm3 = n x 24.47atm dm3mol-1
n = (9.548 atm dm3 / 24.47atm dm3 mol-1)
n = 0.4 moles
Thus, there are 0.4 moles of the gas.
Answer:
moles of water in
of water.
Explanation:
Mass of water = 
Molar mass of water = M = 18 g/mol
Moles = n = 

So, there are
moles of water in
of water.