Answer:
The time taken by the projectile to hit the ground is 6.85 sec.
Explanation:
Given that,
Vertical height of cliff = 230 m
Distance = 300 m
Suppose, determine the time taken by the projectile to hit the ground.
We need to calculate the time
Using second equation of motion

Where, s = vertical height of cliff
u = initial vertical velocity
g = acceleration due to gravity
Put the value in the equation



Hence, The time taken by the projectile to hit the ground is 6.85 sec.
-- The resistance of the heater is (volts/current) = 5 ohms
-- The heating (RMS) value of a sinusoidal AC is V(peak)/√2 . For this particular alternator, V(peak)=100V, so the heating (RMS) equivalent is 70.71 V.
-- The heating power delivered to the electric heater is (E²/R).
Power = (100/√2)² / 5
Power = 5,000 / 5
<u>Power = 1,000 watts </u>
Answer:
a=2500J,b=1000K,c=1000J,d=14.142m/s
Explanation:
V²=U²+2gh
V²=0 + 2×10×10=200m/s
a).kinetic energy=(1/2)mv²=(1/2)25×200=2500
potential energy=mgh
p.e=25×10×10=2500J
pe+ke=2500+2500=5KJ
b).mgh=25×10×4=1000J
c). V²=U²+2gh
V²=0+2×10×4
V²=80
kinetic energy=(1/2)mv²
=(1/2)25×80
=1KJ
d). From my first paragraph V²=200
V=√200
V=14.142m/s
Answer:
Could you explain that more better?
Explanation: