1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lunna [17]
3 years ago
11

Forces can be added together only if they are

Physics
1 answer:
Snezhnost [94]3 years ago
7 0
The answer for question 1 is A.
The answer for question 2 is C
You might be interested in
An object of mass 30 kg is falling in air and experiences a force due to air resistance of 50
Setler79 [48]

Answer:

very hard others will answer it

Explanation:

hard

6 0
2 years ago
A "moving sidewalk" in an airport terminal moves at 1.0 m/s and is 35.0 m long. If a woman steps on at one end and walks at 1.5
pishuonlain [190]

Answer:

a.14 s

b.70 s

Explanation:

a.Let the sidewalk moving in positive x- direction.

Speed  of sidewalk relative to ground=v_s=1m/s

Speed of women relative to sidewalk=v=1.5m/s

The speed of women relative to the ground

v_w=v_s+v=1+1.5=2.5m/s

Distance=35 m

Time=\frac{distance}{speed}

Using the formula

Time taken by women to reach the opposite end if she walks in the same direction the sidewalk is moving=\frac{35}{v_w}=\frac{35}{2.5}=14s

b.If she gets on at the end opposite the end in part (a)

Then, we take displacement negative.

Speed  of sidewalk relative to ground=v_s=1m/s

Speed of women relative to sidewalk=v=-1.5 m/s

The speed of women relative to the ground=v_w=v_s+v=1-1.5=-0.5m/s

Time=\frac{-35}{-0.5}=70 s

Hence, the women takes 70 s to reach the opposite end if she walks in the opposite direction the sidewalk is moving.

3 0
3 years ago
A man is standing on a weighing machine on a ship which is bobbing up and down with simple harmonic motion of period T=15.0s.Ass
STALIN [3.7K]

Well, first of all, one who is sufficiently educated to deal with solving
this exercise is also sufficiently well informed to know that a weighing
machine, or "scale", should not be calibrated in units of "kg" ... a unit
of mass, not force.  We know that the man's mass doesn't change,
and the spectre of a readout in kg that is oscillating is totally bogus.

If the mass of the man standing on the weighing machine is 60kg, then
on level, dry land on Earth, or on the deck of a ship in calm seas on Earth,
the weighing machine will display his weight as  588 newtons  or as 
132.3 pounds.  That's also the reading as the deck of the ship executes
simple harmonic motion, at the points where the vertical acceleration is zero.

If the deck of the ship is bobbing vertically in simple harmonic motion with
amplitude of M and period of 15 sec, then its vertical position is 

                                     y(t) = y₀ + M sin(2π t/15) .

The vertical speed of the deck is     y'(t) = M (2π/15) cos(2π t/15)

and its vertical acceleration is          y''(t) = - (2πM/15) (2π/15) sin(2π t/15)

                                                                = - (4 π² M / 15²)  sin(2π t/15)

                                                                = - 0.1755 M sin(2π t/15) .

There's the important number ... the  0.1755 M.
That's the peak acceleration.
From here, the problem is a piece-o-cake.

The net vertical force on the intrepid sailor ... the guy standing on the
bathroom scale out on the deck of the ship that's "bobbing" on the
high seas ... is (the force of gravity) + (the force causing him to 'bob'
harmonically with peak acceleration of  0.1755 x amplitude).

At the instant of peak acceleration, the weighing machine thinks that
the load upon it is a mass of  65kg, when in reality it's only  60kg.
The weight of 60kg = 588 newtons.
The weight of 65kg = 637 newtons.
The scale has to push on him with an extra (637 - 588) = 49 newtons
in order to accelerate him faster than gravity.

Now I'm going to wave my hands in the air a bit:

Apparent weight = (apparent mass) x (real acceleration of gravity)

(Apparent mass) = (65/60) = 1.08333 x real mass.

Apparent 'gravity' = 1.08333 x real acceleration of gravity.

The increase ... the 0.08333 ... is the 'extra' acceleration that's due to
the bobbing of the deck.

                        0.08333 G  =  0.1755 M

The 'M' is what we need to find.

Divide each side by  0.1755 :          M = (0.08333 / 0.1755) G

'G' = 9.0 m/s²
                                       M = (0.08333 / 0.1755) (9.8) =  4.65 meters .

That result fills me with an overwhelming sense of no-confidence.
But I'm in my office, supposedly working, so I must leave it to others
to analyze my work and point out its many flaws.
In any case, my conscience is clear ... I do feel that I've put in a good
5-points-worth of work on this problem, even if the answer is wrong .

8 0
3 years ago
A car travels on a straight, level road. (a) Starting from rest, the car is going 38 ft/s (26 mi/h) at the end of 4.0 s. What is
lbvjy [14]

Answer:

a)9.5\frac{ft}{s^2}\\ b) 12.66\frac{ft}{s^2}

Explanation:

A body has acceleration when there is a change in the velocity vector, either in magnitude or direction. In this case we only have a change in magnitude. The average acceleration represents the speed variation that takes place in a given time interval.

a)

a_{avg}=\frac{\Delta v}{\Delta t}\\a_{avg}=\frac{v_{f}-v_{i}}{t_{f}- t_{i}}\\a_{avg}=\frac{38\frac{ft}{s}-0}{4 s- 0}=9.5\frac{ft}{s^2}\\

b)

a_{avg}=\frac{\Delta v}{\Delta t}\\a_{avg}=\frac{v_{f}-v_{i}}{t_{f}- t_{i}}\\a_{avg}=\frac{76\frac{ft}{s}-38\frac{ft}{s}}{7 s- 4s}\\a_{avg}=\frac{38\frac{ft}{s}}{3s}=12.66\frac{ft}{s^2}

8 0
3 years ago
What is the average speed of a car that travels 60 meters in 2<br> seconds?
blondinia [14]

Answer:

30 m/s

Explanation:

Speed is distance over time. 60 meters / 2 seconds, = 30 m/s.

6 0
3 years ago
Other questions:
  • Oxygen-18 is a naturally-occuring, stable isotope and is commonly used is scientific studies as a tracer. Using the periodic tab
    6·2 answers
  • A person wishes to heat pot of fresh water from 20°C to 100°C in order to boil water for pasta. They calculate that their pot ho
    10·1 answer
  • What forms of technology are scientists using to study El Niño? need help fast!?!?!?!?
    7·2 answers
  • The density differences in the ocean water are due to different salt concentrations and differences in temperature. These differ
    13·1 answer
  • 3. The electric field of a sinusoidal electromagnetic wave has an amplitude of 5.0 V/m. How much radiation energy passes through
    7·1 answer
  • A 45.0 kg ice skater needs a 25 N horizontal force to get moving on a smooth ice surface. What is the coefficient of friction be
    11·1 answer
  • An object is moved 29 meters with a force of 289 N. what is the work done
    12·1 answer
  • PLEASE ITS AN Emergency IF ITS RIGHT I WILL GIVE BRAINLIEST
    6·1 answer
  • After fertilization in the fallopian tube, how many days will the zygote travel before arriving at uterus?.
    11·1 answer
  • What’s better csp or pv ?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!