If you wrap some of the wire around the nail in one direction and some of the wire in the other direction, the magnetic fields from the different sections fight each other and cancel out, reducing the strength of your magnet.
Explanation:
The given data is as follows.
Spring constant (k) = 78 N/m, 
Mass of block (m) = 0.50 kg
According to the formula of energy conservation,
mgh sin
h =
= 
= 0.64 m
Thus, we can conclude that the distance traveled by the block is 0.64 m.
The answer is parallel
If the <span>circuits in a car</span> were series, they would go out at the same time.
I hope this helps! :3
Answer:
Berries is the correct answer because it is the produce in your pyramid and as each living thing is devoured by another there is less energy. For instance the berry has the most energy because it’s energy has just come from the sun. But then an insect eats it and consumes most of its energy but some energy is released into the atmosphere. Then a rodent eats the bug and consumes its energy but yet again some energy is released into the atmosphere. So each time there is less and less energy. Does that help any?
Explanation:
it’s energy has just come from the sun. But then an insect eats it and consumes most of its energy but some energy is released into the atmosphere.
Answer:
35 mph
Explanation:
The key of this problem lies in understanding the way that projectile motion works as we are told to neglect the height of the javelin thrower and wind resistance.
When the javelin is thown, its velocity will have two components: a x component and a y component. The only acceleration that will interact with the javelin after it was thown will be the gravety, which has a -y direction. This means that the x component of the velocity will remain constant, and only the y component will be affected, and can be described with the constant acceleration motion properties.
When an object that moves in constant acceleration motion, the time neccesary for it to desaccelerate from a velocity v to 0, will be the same to accelerate the object from 0 to v. And the distance that the object will travel in both desaceleration and acceleration will be exactly the same.
So, when the javelin its thrown, it willgo up until its velocity in the y component reaches 0. Then it will go down, and it will reach reach the ground in the same amount of time it took to go up and, therefore, with the same velocity.