Answer:
θ = 13.16 °
Explanation:
Lets take mass of child = m
Initial velocity ,u= 1.1 m/s
Final velocity ,v=3.7 m/s
d= 22.5 m
The force due to gravity along the incline plane = m g sinθ
The friction force = (m g)/5
Now from work power energy
We know that
work done by all forces = change in kinetic energy
( m g sinθ - (m g)/5 ) d = 1/2 m v² - 1/2 m u²
(2 g sinθ - ( 2 g)/5 ) d = v² - u²
take g = 10 m/s²
(20 sinθ - ( 20)/5 ) 22.5 = 3.7² - 1.1²
20 sinθ - 4 =12.48/22.5
θ = 13.16 °
Answer and Explanation:
Tropical storm:
The point at which the tropical depression intensifies and can sustain a maximum wind speed in the range of 39-73 mph, it is termed as a tropical storm.
Hurricane:
A hurricane is that type of tropical cyclone which includes with it high speed winds and thunderstorms and the intensity of the sustained wind speed is 74 mph or more than this.
Hurricanes are the most intense tropical cyclones.
The only difference between the tropical storm and hurricane is in the intensity.
Which energy is best discribed for you and math
Answer:
3.6ft
Explanation:
Using= 2*π*sqrt(L/32)
To solve for L, first move 2*n over:
T/(2*π) = sqrt(L/32)
Next,eliminate the square root by squaring both sides
(T/(2*π))2 = L/32
or
T2/(4π2) = L/32
Lastly, multiply both sides by 32 to yield:
32T2/(4π2) = L
and simplify:
8T²/π²= L
Hence, L(T) = 8T²/π²
But T = 2.1
Pi= 3.14
8(2.1)²/3.14²
35.28/9.85
= 3.6feet
Answer:
m1 = 20g (= 0.02 kg)
Mass of pistol, m2 = 2 kg
Initial velocity of the bullet (u1) and pistol (u2) = 0
Final velocity of the bullet, v1 = +150m s-1
Let v be the recoil velocity of the pistol.
Total momentum of the pistol and bullet after it is fired is
= (0.02 kg x 150 m s-1) + (2 kg x v m s-1)
= (3 + 2v) kg m s-1
Total momentum after the fire = Total momentum before the fire
3 + 2v = 0
→v = -1.5 m/s