Answer:
transferred
Energy
Explanation:
Energy is the ability to change the state of bringing about a work leading to movement or generating electromagnetic radiation. There are actually many forms of energy. So, kinetic energy is a form of energy related to the movement of a body. The combustion, in turn, retrieves the potential energy chemical contained in fuels. Solar panels capture light energy to transform it into electrical energy.
Answer:
Activation energy is needed so reactants can move together, overcome forces of repulsion, and to begin breaking bonds.
Explanation:
Answer:
9.36
Explanation:
Sodium formate is the conjugate base of formic acid.
Also,

for sodium formate is 
Given that:
of formic acid = 
And, 
So,


Concentration = 0.35 M
HCOONa ⇒ Na⁺ + HCOO⁻
Consider the ICE take for the formate ion as:
HCOO⁻ + H₂O ⇄ HCOOH + OH⁻
At t=0 0.35 - -
At t =equilibrium (0.35-x) x x
The expression for dissociation constant of sodium formate is:
![K_{b}=\frac {[OH^-][HCOOH]}{[HCOO^-]}](https://tex.z-dn.net/?f=K_%7Bb%7D%3D%5Cfrac%20%7B%5BOH%5E-%5D%5BHCOOH%5D%7D%7B%5BHCOO%5E-%5D%7D)

Solving for x, we get:
x = 0.44×10⁻⁵ M
pOH = -log[OH⁻] = -log(0.44×10⁻⁵) = 4.64
pH + pOH = 14
So,
<u>pH = 14 - 4.64 = 9.36</u>
<h2><u>Answer</u> :</h2>
The most appropriate option is :

Since, they are the most abundant elements found in Earth's Crust.

Answer : The expression for reaction quotient will be :
(1) ![Q_c=\frac{[SO_2][HF]^4}{[SF_4]}](https://tex.z-dn.net/?f=Q_c%3D%5Cfrac%7B%5BSO_2%5D%5BHF%5D%5E4%7D%7B%5BSF_4%5D%7D)
(2) ![Q_c=\frac{[O_2]^2[Xe]}{[XeF_2]}](https://tex.z-dn.net/?f=Q_c%3D%5Cfrac%7B%5BO_2%5D%5E2%5BXe%5D%7D%7B%5BXeF_2%5D%7D)
Explanation :
Reaction quotient
: It is defined as the measurement of the relative amounts of products and reactants present during a reaction at a particular time.
(1) The given balanced chemical reaction is,

In this expression, only gaseous or aqueous states are includes and pure liquid or solid states are omitted. So, the expression for reaction quotient will be :
![Q_c=\frac{[SO_2][HF]^4}{[SF_4]}](https://tex.z-dn.net/?f=Q_c%3D%5Cfrac%7B%5BSO_2%5D%5BHF%5D%5E4%7D%7B%5BSF_4%5D%7D)
(2) The given balanced chemical reaction is,
![2MoO_2(s)+XeF_2(g)\rightarrow 2MoF(l)+Xe(g)+2O_2(g)[/texIn this expression, only gaseous or aqueous states are includes and pure liquid or solid states are omitted. So, the expression for reaction quotient will be :[tex]Q_c=\frac{[O_2]^2[Xe]}{[XeF_2]}](https://tex.z-dn.net/?f=2MoO_2%28s%29%2BXeF_2%28g%29%5Crightarrow%202MoF%28l%29%2BXe%28g%29%2B2O_2%28g%29%5B%2Ftex%3C%2Fp%3E%3Cp%3EIn%20this%20expression%2C%20only%20gaseous%20or%20aqueous%20states%20are%20includes%20and%20pure%20liquid%20or%20solid%20states%20are%20omitted.%20%20So%2C%20the%20expression%20for%20reaction%20quotient%20will%20be%20%3A%3C%2Fp%3E%3Cp%3E%5Btex%5DQ_c%3D%5Cfrac%7B%5BO_2%5D%5E2%5BXe%5D%7D%7B%5BXeF_2%5D%7D)