Answer:
"Rad dude , love that queen"
Explanation:
ANSWER:
2.65 g H2O
Explanation:
6.49g (co2) / 44.009g (co2) x 1 mol (co2) / 1 mol (h2o) x 1 mol (h2o)
=0.147 mol H2O
0.147 mol (H2O) / 1 mol (h2o) x 18.015 g (h2o)
=2.65 g H2O
Answer:
5746.0 mL.
Explanation:
We can use the general law of ideal gas:<em> PV = nRT.</em>
where, P is the pressure of the gas in atm.
V is the volume of the gas in L.
n is the no. of moles of the gas in mol.
R is the general gas constant,
T is the temperature of the gas in K.
If n and P are constant, and have two different values of V and T:
<em>V₁T₂ = V₂T₁</em>
<em></em>
V₁ = 6193.0 mL, T₁ = 62.3°C + 273 = 335.3 K.
V₂ = ??? mL, T₂ = 38.1°C + 273 = 311.1 K.
<em>∴ V₂ = V₁T₂/T₁ </em>= (6193.0 mL)(311.1 K)/(335.3 K) = <em>5746.0 mL.</em>
Hey there!:
Molar mass NaCl = 58.44 g/mol
Number of moles:
n = mass of solute / molar mass
n = 15.6 / 58.44
n = <span>0.2669 moles of NaCl
hope this helps!</span>
The volume of water vapour would be produced at 19°C and 780 torr is 548.5mL.
If 400 ml of CO2 is produced at 30°C at 740 torr, then number of moles can be calculated as:
By using ideal gas equation:
P1V1 = N1R1T1
P1 = pressure = 740torr
V1 = 400 ml = volume of CO2
R = Gas constant = 8.314
T = 273+30 = 303 k
740×400 = N1×8.314×303
N1 = (740×400) /(8.314×303) =117.5.
Chemical equation
C2H6 ---- 2CO2 + 3H2O.
As we noticed from the equation that
2 moles of CO2 = 3 moles of H2O
1 moles of CO2 × 1 moles of H2O
Then N2 = 117.5 moles of CO2 = 3/2 × 117.5 moles of H2O
By using ideal gas equation:
P2V2 = N2RT2
V2 = 3/2 × 117.5 × 8.314 × 292/ 780
= 548.5ml.
Thus, we found that the volume of water vapour would be produced at 19°C and 780 torr is 548.5mL.
learn more about ideal gas equation:
brainly.com/question/12242461
#SPJ4