Answer:
The soda is being sucket out at a rate of 3.14 cubic inches/second.
Explanation:
R= 2in
S= π*R²= 12.56 inch²
rate= 0.25 in/sec
rate of soda sucked out= rate* S
rate of soda sucked out= 3.14 inch³/sec
Answer:
Explanation:
The moving charged particles in an electric current are called charge carriers. In metals, one or more electrons from each atom are loosely bound to the atom, and can move freely about within the metal. These conduction electrons are the charge carriers in metal conductors.
The flow of electrons in a direction is known as electric current. The tendency of attraction between the positive and negative charges makes electric current flow through a wire
Answer:
6.88 m/s
Explanation:
The Conservation of Energy states that:
Initial Kinetic Energy + Initial Potential Energy = Final Kinetic Energy + Final Potential Energy
So we can write

We can cancel the common factor of
which leaves us with

Lets solve for 

Subtract
from both sides of the equation.

Multiply both sides of the equation by 2.

Simplify the left side.
Apply the distributive property.

Cancel the common factor of 2.

Take the square root of both sides of the equation to eliminate the exponent on the right side.

We are given
.
We can now solve for the final velocity.

Anything multiplied by 0 is 0.



Answer:
Centripetal Acceleration = v^2/r
= (circumference/time)^2/r
= (2*pi*r/t)²)/r
= ((2³.14*50/14.3)²)/50
= 9.64 m/s²
brainlist?
Explanation:
Answer:
Option E is correct.
There must be a horizontal wind opposite the direction of the stone's motion, because ignoring air resistance when calculating the horizontal range would yield a value greater than 32 m.
Explanation:
Normally, ignoring air resistance, for projectile motion, the range (horizontal distance teavelled) of the motion is given as
R = (u² sin 2θ)/g
where
u = initial velocity of the projectile = 20 m/s
θ = angle above the horizontal at which the projectile was launched = 30°
g = acceleration due to gravity = 9.8 m/s²
R = (30² sin 60°) ÷ 9.8
R = 78.53 m
So, Normally, the stone should travel a horizontal distance of 78.53 m. So, travelling a horizontal distance of 32 m (less than half of what the range should be without air resistance) means that, the motion of the stone was impeded, hence, option E is correct.
There must be a horizontal wind opposite the direction of the stone's motion, because ignoring air resistance when calculating the horizontal range would yield a value greater than 32 m.
Hope this Helps!!!