1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
34kurt
3 years ago
5

In a collision that is not perfectly elastic, what happens to the mechanical energy of the system?

Physics
1 answer:
joja [24]3 years ago
5 0
C.

Thanks me later, that's my answer.
You might be interested in
50 points !! I need help asap.......Consider a 2-kg bowling ball sits on top of a building that is 40 meters tall. It falls to t
r-ruslan [8.4K]

1) At the top of the building, the ball has more potential energy

2) When the ball is halfway through the fall, the potential energy and the kinetic energy are equal

3) Before hitting the ground, the ball has more kinetic energy

4) The potential energy at the top of the building is 784 J

5) The potential energy halfway through the fall is 392 J

6) The kinetic energy halfway through the fall is 392 J

7) The kinetic energy just before hitting the ground is 784 J

Explanation:

1)

The potential energy of an object is given by

PE=mgh

where

m is the mass

g is the acceleration of gravity

h is the height relative to the ground

While the kinetic energy is given by

KE=\frac{1}{2}mv^2

where v is the speed of the object

When the ball is sitting on the top of the building, we have

  • h=40 m, therefore the potential energy is not zero
  • v=0, since the ball is at rest, therefore the kinetic energy is zero

This means that the ball has more potential energy than kinetic energy.

2)

When the ball is halfway through the fall, the height is

h=20 m

So, half of its initial height. This also means that the potential energy is now half of the potential energy at the top (because potential energy is directly proportional to the height).

The total mechanical energy of the ball, which is conserved, is the sum of potential and kinetic energy:

E=PE+KE=const.

At the top of the building,

E=PE_{top}

While halfway through the fall,

PE_{half}=\frac{PE_{top}}{2}=\frac{E}{2}

And the mechanical energy is

E=PE_{half} + KE_{half} = \frac{PE_{top}}{2}+KE_{half}=\frac{E}{2}+KE_{half}

which means

KE_{half}=\frac{E}{2}

So, when the ball is halfway through the fall, the potential energy and the kinetic energy are equal, and they are both half of the total energy.

3)

Just before the ball hits the ground, the situation is the following:

  • The height of the ball relative to the ground is now zero: h=0. This means that the potential energy of the ball is zero: PE=0
  • The kinetic  energy, instead, is not zero: in fact, the ball has gained speed during the fall, so v\neq 0, and therefore the kinetic energy is not zero

Therefore, just before the ball hits the ground, it has more kinetic energy than potential energy.

4)

The potential energy of the ball as it sits on top of the building is given by

PE=mgh

where:

m = 2 kg is the mass of the ball

g=9.8 m/s^2 is the acceleration of gravity

h = 40 m is the height of the building, where the ball is located

Substituting the values, we find the potential energy of the ball at the top of the building:

PE=(2)(9.8)(40)=784 J

5)

The potential energy of the ball as it is halfway through the fall is given by

PE=mgh

where:

m = 2 kg is the mass of the ball

g=9.8 m/s^2 is the acceleration of gravity

h = 20 m is the height of the ball relative to the ground

Substituting the values, we find the potential energy of the ball halfway through the fall:

PE=(2)(9.8)(20)=392 J

6)

The kinetic energy of the ball halfway through the fall is given by

KE=\frac{1}{2}mv^2

where

m = 2 kg is the mass of the ball

v = 19.8 m/s is the speed of the ball when it is halfway through the  fall

Substituting the values into the equation, we find the kinetic energy of the ball when it is halfway through the fall:

KE=\frac{1}{2}(2)(19.8)^2=392 J

We notice that halfway through the fall, half of the initial potential energy has converted into kinetic energy.

7)

The kinetic energy of the ball just before hitting the ground is given by

KE=\frac{1}{2}mv^2

where:

m = 2 kg is the mass of the ball

v = 28 m/s is the speed of the ball just before hitting the ground

Substituting the values into the equation, we find the kinetic energy of the ball just before hitting the ground:

KE=\frac{1}{2}(2)(28)^2=784 J

We notice that when the ball is about to hit the ground, all the potential energy has converted into kinetic energy.

Learn more about kinetic and potential energy:

brainly.com/question/6536722

brainly.com/question/1198647

brainly.com/question/10770261

#LearnwithBrainly

4 0
3 years ago
An atom of uranium 238 emits an alpha particle (an atom of He) and recoils with a velocity of 1.895 * 10^ 5 m/sec . With velocit
lora16 [44]

<u>Answer:</u> The velocity of released alpha particle is 1.127\times 10^7m/s

<u>Explanation:</u>

According to law of conservation of momentum, momentum can neither be created nor be destroyed until and unless, an external force is applied.

For a system:

m_1v_1=m_2v_2

where,

m_1\text{ and }v_1 = Initial mass and velocity

m_2\text{ and }v_2 = Final mass and velocity

We are given:

m_1=238u\\v_1=1.895\times 10^{5}m/s\\m_2=4u\text{ (Mass of }\alpha \text{ -particle)}\\v_2=?m/s

Putting values in above equation, we get:

238\times 1.895\times 10^5=4\times v_2\\\\v_2=\frac{238\times 1.895\times 10^5}{4}=1.127\times 10^7m/s

Hence, the velocity of released alpha particle is 1.127\times 10^7m/s

4 0
3 years ago
Which describes the changes in visible light moving from red to violet?
Alexxx [7]
The energy increases
5 0
3 years ago
Monochromatic light passes through a double slit, producing interference, the distance between the slit centres is 1.2 mm and th
Alik [6]

Answer:

The wavelength of the light is 7200\ \AA.

Explanation:

Given that,

Distance between the slit centers d= 1.2 mm

Distance between constructive fringes \beta= 0.3\ cm

Distance between fringe and screen D= 5 m

We need to calculate the wavelength

Using formula of width

\beta=\dfrac{D\lambda}{d}

Put the value into the formula

0.3\times10^{-2}=\dfrac{5\times\lambda}{1.2\times10^{-3}}

\lambda=\dfrac{0.3\times10^{-2}\times1.2\times10^{-3}}{5}

\lambda=7.2\times10^{-7}\ m

\lambda=7200\ \AA

Hence, The wavelength of the light is 7200\ \AA.

8 0
3 years ago
Kinetic energy of an object is equal to
Arte-miy333 [17]
Choice-'b' says the formula for kinetic energy in words.

     KE = (1/2) · (M) · (S²)
7 0
3 years ago
Read 2 more answers
Other questions:
  • Consider three starships that pass by an observer on Earth. Starship A is traveling at speed v=c/3v=c/3 relative to Earth and ha
    13·1 answer
  • You have a frustrating day and just feel like screaming; you grab a pillow to scream into. Which interaction of sound would take
    5·1 answer
  • What type of bones form inside the tendon of a muscle, where it crosses a joint?
    9·1 answer
  • A batter hits a fly ball which leaves the bat 0.89 m above the ground at an angle of 62 ∘ with an initial speed of 29 m/s headin
    13·1 answer
  • Coins are mixtures of solid in solid. Smoke is a mixture of _____ (solid in gas, gas in solid)
    5·2 answers
  • Two sinusoidal waves with identical wavelengths and amplitudes travel in opposite directions along a string with a speed of 10 c
    9·1 answer
  • A sound wave travels through water. What best describes the direction of the water particles? The water particles move perpendic
    7·1 answer
  • A 1300-turn coil of wire 2.40 cm in diameter is in a magnetic field that increases from 0 T to 0.120 T in 9.00 ms . The axis of
    6·1 answer
  • the intermolecular force of attraction increases when intermolecular space decreases .Is it true or false​
    13·1 answer
  • Which of the following describes the least amount of work being done? A. wind turning a windmill B. a batter hitting a baseball
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!