Distance = (speed) x (time)
Distance = (20 m/s) x (500 s)
Distance = (20 x 500) (m·s / s)
Distance = 10,000 m
It is because that is how mirrors work, they reflect light, and since we see objects because we are seeing the light these objects reflect, what is reflected back by the mirror is what we see.
The wave-particle dual nature of light has been documented and tested many times.
Choice A
Answer:
Option D is correct: 170 µW/m²
Explanation:
Given that,
Frequency f = 800kHz
Distance d = 2.7km = 2700m
Electric field Eo = 0.36V/m
Intensity of radio signal
The intensity of radial signal is given as
I = c•εo•Eo²/2
Where c is speed of light
c = 3×10^8m/s
εo = 8.85 × 10^-12 C²/Nm²
I = 3×10^8 × 8.85×10^-12 × 0.36²/2
I = 1.72 × 10^-4W/m²
I = 172 × 10^-6 W/m²
I = 172 µW/m²
Then, the intensity of the radio wave at that point is approximately 170 µW/m²