Answers:
a) 
b) 
c) 
Explanation:
<h3>a) Impulse delivered to the ball</h3>
According to the Impulse-Momentum theorem we have the following:
(1)
Where:
is the impulse
is the change in momentum
is the final momentum of the ball with mass
and final velocity (to the right) 
is the initial momentum of the ball with initial velocity (to the left) 
So:
(2)
(3)
(4)
(5)
<h3>b) Time </h3>
This time can be calculated by the following equations, taking into account the ball undergoes a maximum compression of approximately
:
(6)
(7)
Where:
is the acceleration
is the length the ball was compressed
is the time
Finding
from (7):
(8)
(9)
(10)
Substituting (10) in (6):
(11)
Finding
:
(12)
<h3>c) Force applied to the ball by the bat </h3>
According to Newton's second law of motion, the force
is proportional to the variation of momentum
in time
:
(13)
(14)
Finally:

To solve this exercise it is necessary to apply the concepts related to Centripetal and Perimeter acceleration of a circle.
The perimeter of a circle is defined by

Where,
r= radius
While centripetal acceleration is defined by

Where,
v= velocity
r= radius
PART A)
The distance of a body can be defined based on the speed and the time traveled, that is
x = v*t
For our values the distance is equal to
x = 15*115=1725m
The plane when going to make the turn from east to south makes a quarter of the circumference that is

The same route you take is the distance traveled, that is




PART B)
With the radius is possible calculate he centripetal acceleration,



Therefore the radius of the curva that the plane follows in making the turn is 1098.17m with a centripetal acceleration of 
Answer:25.61 m/s
Explanation:
Given
truck is moving eastbound with a velocity of 16 m/s
Velocity of truck 
SUV is moving south with a velocity of 20 m/s
Velocity of SUV in vector form 
Velocity of truck relative to the SUV


Magnitude of relative velocity is

Answer:
Two orbitals for their electrons and six in the 2p subshell
Explanation:
Hope this helps :)