Answer:
The magnitude of the magnetic torque on the coil is 1.98 A.m²
Explanation:
Magnitude of magnetic torque in a flat circular coil is given as;
τ = NIASinθ
where;
N is the number of turns of the coil
I is the current in the coil
A is the area of the coil
θ is the angle of inclination of the coil and magnetic field
Given'
Number of turns, N = 200
Current, I = 7.0 A
Angle of inclination, θ = 30°
Diameter, d = 6 cm = 0.06 m
A = πd²/4 = π(0.06)²/4 = 0.002828 m²
τ = NIASinθ
τ = 200 x 7 x 0.002828 x Sin30
τ = 1.98 A.m²
Therefore, the magnitude of the magnetic torque on the coil is 1.98 A.m²
Question 4 is true, question 5 is B.
Answer:

Explanation:
First of all let's define the specific molar heat capacity.
(1)
Where:
Q is the released heat by the system
n is the number of moles
ΔT is the difference of temperature of the system
Now, we can find n with the molar mass (M) the mass of the compound (m).
Using (1) we have:


I hope it helps!
Answer:
<em>1</em><em>. </em><em>A body is said to be at rest if its position does not change with respect to its surroundings.</em>