<h2>
Answer:</h2>
1.68 x 10⁻⁸Ωm
<h2>
Explanation:</h2>
The resistance (R) of a wire is related to its length(L), its material resistivity(ρ) and its crossectional area(A) as follows;
R = ρL/A ------------------------(i)
Where;
A = πd² / 4 [where d = diameter of the wire]
From the question;
L = 6.90m
d = 2.15mm = 0.00215m
R = 0.0320Ω
First calculate the crossectional area (A) of the wire as follows;
A = πd² / 4
[Take π = 3.142]
d = 0.00215m
∴ A = 3.142 x (0.00215)² / 4
∴ A = 0.000003631m²
Now, substitute the values of A, L, and R into equation (i) as follows;
R = ρL/A
0.0320 = ρ x 6.90 / 0.000003631
0.0320 = 1900302.95 x ρ
Solve for ρ;
=> ρ = 0.0320 / 1900302.95
=> ρ = 1.68 x 10⁻⁸Ωm
Therefore, the resistivity of the material of the wire is 1.68 x 10⁻⁸Ωm
The non-relativistic formula for kinetic energy for low speeds is :
K.E = 0.5mv^2 = 0.5 * 22 * (5)^2 = 275 J
Answer:
A dependent variable is a variable that is tested in an experiment. An independent variable is that can be modified. Depending on what you are testing, the dependent variable will change accordingly to the dependent variable.
- I'm reading this back and it doesn't make much sense, if you want me to reword this I can
Work done = force * distance
work done = 200 * 20
work done = 4000J
Ohms Law: V = IR
V is the voltage in volts
I is the current in amps
R is the resistance in Ohms
Rearrange: R = V/I
R = (110)/(0.050)
R = 2200
There are 2200 Ohms of resistance in the circuit.