1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nignag [31]
3 years ago
14

Which of the following is true about mutations in somatic cells?

Physics
1 answer:
S_A_V [24]3 years ago
6 0

Answer:

B.) They affect the reproductive cells.

You might be interested in
All objects emit what radiation
Eduardwww [97]
If an object is not at Absolute Zero, then it is
absorbing and radiating thermal (heat) energy.
5 0
3 years ago
Mr. MacDougall got his vehicle stuck in the snow. Being the nice student that you are, you stop to help Mr. MacDougall out of th
zhannawk [14.2K]

Answer:

Explanation:

work done=force*displacement

=350N*15m

=5250 joule

4 0
3 years ago
MATHPHYS CAN U HELP ME PLEASE
ludmilkaskok [199]

Explanation:

(1) The heat added to warm the ice to 0°C is:

q = mCΔT = (0.041 kg) (2090 J/kg/°C) (0°C − (-11°C)) = 942.59 J

The heat added to melt the ice is:

q = mL = (0.041 kg) (3.33×10⁵ J/kg) = 13,653 J

The heat added to warm the water to 100°C is:

q = mCΔT = (0.041 kg) (4186 J/kg/°C) (100°C − 0°C) = 17,162.6 J

The heat added to evaporate the water is:

q = mL = (0.041 kg) (2.26×10⁶ J/kg) = 92,660 J

The heat added to warm the steam to 115°C is:

q = mCΔT = (0.041 kg) (2010 J/kg/°C) (115°C − 100°C) = 1236.15 J

The total heat needed is:

q = 942.59 J + 13,653 J + 17,162.6 J + 92,660 J + 1236.15 J

q = 125,654.34 J

(2) When the first two are mixed:

m C₁ (T₁ − T) + m C₂ (T₂ − T) = 0

C₁ (T₁ − T) + C₂ (T₂ − T) = 0

C₁ (6 − 11) + C₂ (25 − 11) = 0

-5 C₁ + 14 C₂ = 0

C₁ = 2.8 C₂

When the second and third are mixed:

m C₂ (T₂ − T) + m C₃ (T₃ − T) = 0

C₂ (T₂ − T) + C₃ (T₃ − T) = 0

C₂ (25 − 33) + C₃ (37 − 33) = 0

-8 C₂ + 4 C₃ = 0

C₂ = 0.5 C₃

Substituting:

C₁ = 2.8 (0.5 C₃)

C₁ = 1.4 C₃

When the first and third are mixed:

m C₁ (T₁ − T) + m C₃ (T₃ − T) = 0

C₁ (T₁ − T) + C₃ (T₃ − T) = 0

(1.4 C₃) (6 − T) + C₃ (37 − T) = 0

(1.4) (6 − T) + 37 − T = 0

8.4 − 1.4T + 37 − T = 0

2.4T = 45.4

T = 18.9°C

(3) Heat gained by the ice = heat lost by the tea

mL + mCΔT = -mCΔT

m (3.33×10⁵ J/kg) + m (2090 J/kg/°C) (30.8°C − 0°C) = -(0.176 kg) (4186 J/kg/°C) (30.8°C − 32.8°C)

m (397372 J/kg) = 1473.472 J

m = 0.004 kg

m = 4 g

4 grams of ice is melted and warmed to the final temperature, which leaves 128 grams unmelted.

(4) The heat added to warm the ice to 0°C is:

q = mCΔT = (0.028 kg) (2090 J/kg/°C) (0°C − (-67°C)) = 3920.84 J

The heat added to melt the ice is:

q = mL = (0.028 kg) (3.33×10⁵ J/kg) = 9324 J

The heat added to warm the melted ice to T is:

q = mCΔT = (0.028 kg) (4186 J/kg/°C) (T − 0°C) = (117.208 J/°C) T

The heat removed to cool the water to T is:

q = -mCΔT = -(0.505 kg) (4186 J/kg/°C) (T − 27°C)

q = (2113.93 J/°C) (27°C − T) = 57076.11 J − (2113.93 J/°C) T

The heat removed to cool the copper to T is:

q = -mCΔT = -(0.092 kg) (387 J/kg/°C) (T − 27°C)

q = (35.604 J/°C) (27°C − T) = 961.308 J − (35.604 J/°C) T

Therefore:

3920.84 J + 9324 J + (117.208 J/°C) T = 57076.11 J − (2113.93 J/°C) T + 961.308 J − (35.604 J/°C) T

13244.84 J + (117.208 J/°C) T = 58037.418 J − (2149.534 J/°C) T

(2266.742 J/°C) T = 44792.58 J

T = 19.8°C

(5) Kinetic energy of the hammer = heat absorbed by ice

KE = q

½ mv² = mL

½ (0.8 kg) (0.9 m/s)² = m (80 cal/g × 4.186 J/cal × 1000 g/kg)

m = 9.68×10⁻⁷ kg

m = 9.68×10⁻⁴ g

(6) Heat rate = thermal conductivity × area × temperature difference / thickness

q' = kAΔT / t

q' = (1.09 W/m/°C) (4.5 m × 9 m) (10°C − 4°C) / (0.09 m)

q' = 2943 W

After 10.7 hours, the amount of heat transferred is:

q = (2943 J/s) (10.7 h × 3600 s/h)

q = 1.13×10⁸ J

q = 113 MJ

6 0
3 years ago
A geneticist looks through a microscope to determine the phenotype of a fruit fly. The microscope is set to an overall magnifica
guajiro [1.7K]

Answer:

f_{e} = 1.7 cm

Explanation:

The magnification of the compound microscope is given by the product of the magnification of each lens

        M = M₀ m_{e}

        M = - L/f₀  25/f_{e}

Where f₀ and f_{e} are the focal lengths of the lens and eyepiece, respectively, all values ​​in centimeters

In this exercise they give us the magnification (M = 400X), the focal length of the lens (f₀ = 0.6 cm), the distance of the tube (L = 16 cm), let's look for the focal length of the eyepiece (f_{e})

         f_{e} = - L / f₀ 25 / M

Let's calculate

        f_{e} = - 16 / 0.6 25 / (-400)

        f_{e} = 1.67 cm

The minus sign in the magnification is because the image is inverted.

          f_{e} = 1.7 cm

6 0
3 years ago
Determine the kinetic energy of 1000-kg roller coaster car that is moving with speed of 20.0m/s
nevsk [136]
B, i got the same question
7 0
3 years ago
Other questions:
  • Songbirds often eat berries. Berry seeds are activated by the acids located in a bird's stomach. Once the bird's body eliminates
    10·2 answers
  • A physics student is riding on a train traveling north. Having read about inertia, the student performs an experiment with a gol
    12·1 answer
  • Mrs. Buckley asked her physical science class to look at the graph and tell which of the following explanations are most likely
    14·2 answers
  • Both lead and zinc are formed as precipitates. Which of these is a step in the formation of the minerals?
    12·1 answer
  • Suppose you are navigating a spacecraft far from other objects. The mass of the spacecraft is 2.0 104 kg (about 20 tons). The ro
    10·1 answer
  • A 500 gram mass is connected to a spring and undergoing uniform circular motion. The radius is at 14.5 cm and the applied centri
    9·1 answer
  • I have a device that can generate sounds with frequencies between 800 Hz and 1600 Hz. I also have an unlabeled tuning fork that
    9·1 answer
  • A charged particle moves through a velocity selector at a constant speed in a straight line. The electric field of the velocity
    6·1 answer
  • What type of charge is used as the test charge to determine the direction of electric fields?
    10·1 answer
  • A football is kicked from the ground with a speed of 16.71 m/s at an angle of 49.21 degrees. What is the vertical component of t
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!