Answer:

Explanation:
The ideal gas law equation is an equation that relates some of the quantities that describe a gas: pressure, volume and temperature.
The equation is:

where
p is the pressure of the gas
V is the volume of the gas
n is the number of moles of the gas
R is the gas constant
T is the absolute temperature of the gas (must be expressed in Kelvin)
Here we want to solve the equation isolating p, the pressure of the gas.
We can do that simply by dividing both terms by the volume, V. We find:

So, we see that:
- The pressure is directly proportional to the temperature of the gas
- The pressure is inversely proportional to the volume of the gas
Answer:
The length of an edge of this unit cell is 407.294 pm
Explanation:
Face centered cubic structure contains 4 atoms in each unit cell and 12 coordination number, occupying about 74% volume of the total cell. Face centered cubic structure is known for efficient use of space for atom packing.
To determine the edge length, a relationship between the radius of the atom and edge length is used.
X = R√8
Where;
X is the length of an edge of this unit cell
R is the radius of the gold atom = 144 pm = 144 X 10⁻¹² m
X = 144 X 10⁻¹²√8
X = 407.294 X 10⁻¹² m
X = 407.294 pm
Therefore, the length of an edge of this unit cell is 407.294 pm
Explanation:
From the knowledge of law of multiple proportions,
mass ratio of S to O in SO:
mass of S : mass of O
= 32 : 16
= 32/16
= 2/1
mass ratio of S to O in SO2:
= mass of S : 2 × mass of O
= 32 : 2 × 16
= 32/32
= 1/1
ratio of mass ratio of S to O in SO to mass ratio of S to O in SO2:
= 2/1 ÷ 1/1
= 2
Thus, the S to O mass ratio in SO is twice the S to O mass ratio in SO2.
Explanation:
Kinetic energy is defined as the energy obtained by an object due to its motion. Whereas energy obtained by an object due to its position is known as potential energy.
(a) When a sled is resting at the top of a hill then it means the sled in not moving. Hence, then it has only potential energy. But when a sled sliding down the hill then it is moving from its initial position.
Hence, when a sled is sliding down the hill then it has higher kinetic energy.
(b) When water is above the dam then it only has potential energy but when the water falls over the dam then it has higher kinetic energy.