Answer:
4.36 g of Carbon
Solution:
Step 1: Calculate the %age of Carbon in given Solid as;
Mass of Carbon = 35.8 g
Mass of Hydrogen = 3.72
Total Mass = 35.8 g + 3.72 = 39.52 g
%age of Carbon = (35.8 g ÷ 39.52 g) × 100
%age of carbon = 90.58 %
Step 2: Calculate grams of Carbon in 4.82 g of given solid as;
Mass of Carbon = 4.82 g × (90.58 ÷ 100)
Mass of Carbon = 4.36 g
Answer:
a-Interatomic bonds
Explanation:
First of all, it is not a force. Let alone be molecular force.
Answer:
1) 0 N
2) 8 N
Explanation:
The net force is the sum of all of the forces acting on the object.
For question 1, we can see that there is a force of 5 N acting to the right and 5 N acting to the left. If we define the right to be positive and the left to be negative, then the net force equals:
Fnet = 5N - 5N = 0 N
Therefore, the net force in question 1 is 0 N.
For question 2, the process is very similar. We want to find the sum of the forces acting on the object. In this case, there are forces of 3 N and 5 N acting to the right.
Fnet = 3 N + 5 N = 8 N
Therefore, the net force in question 2 is 8 N.
Hope this helps!
Answer:
Protons: 79
Electrons: 78
Explanation:
1. The number of protons is the atomic number (The atomic number for Au on the periodic table is 79)
2. Since the charge is +1 (positive) it means that there's one more proton than electrons. So, 79-1 = 78 electrons
Answer:
2B2 + 3O2 → 2B2O3
Explanation:
Balance The Equation: B2 + O2 = B2O3
1. Label Each Compound With a Variable
aB2 + bO2 = cB2O3
2. Create a System of Equations, One Per Element
B: 2a + 0b = 2c
O: 0a + 2b = 3c
3. Solve For All Variables (using substitution, gauss elimination, or a calculator)
a = 2
b = 3
c = 2
4. Substitute Coefficients and Verify Result
2B2 + 3O2 = 2B2O3
L R
B: 4 4 ✔️
O: 6 6 ✔️
hope this helps!