Answer:
Like any wave, a sound wave doesn't just stop when it reaches the end of the medium or when it encounters an obstacle in its path. Rather, a sound wave will undergo certain behaviors when it encounters the end of the medium or an obstacle. Possible behaviors include reflection off the obstacle, diffraction around the obstacle, and transmission (accompanied by refraction) into the obstacle or new medium
The enthalpies of formation of each of the compound involved in the chemical reaction presented above are given below:
CO2: -393.5 kJ/mol
CO: -99 kJ/mol
O2: 0 kJ/mol
As observed O2 will not have enthalpy of formation as it is a pure substance.
To calculate for the enthalpy of reaction,
enthalpy of formation of products - enthalpy of formation of reactants
= (-99 kJ/mol) - (-393.5 kJ/mol)
= 294.5 kJ/mol
ANSWER: 294.5 kJ/mol
Answer:
6.142 moles of NaCl
Explanation:
We'll begin by writing the balanced equation for the reaction. This is given below:
2AlCl3 + 3Na2S —> Al2S3 + 6NaCl
Next, we determine the number of mole in 239.7 g of Na2S. This is illustrated below:
Mass mass of Na2S = 78.048g/mol
Mass of Na2S = 239.7g
Number of mole Na2S =..?
Mole = Mass /Molar Mass
Number of mole Na2S = 239.7/78.048 = 3.071 moles
Finally, we can obtain the number of mole of NaCl produced from the reaction as follow:
From the balanced equation above,
3 moles of Na2S reacted to produce 6 moles of NaCl.
Therefore, 3.071 moles of Na2S will react to produce = (3.071 x 6)/3 = 6.142 moles of NaCl
Option B is correct
K = Kp /Kr
The given equation indicating, the product containing 6 moles of proton whereas the reactant contains 2 mole of bismuth and 3 mole of hydrogen sulphide.
Hence, in reaction B there are 2 mole of bismuth and 3 mole of hydrogen sulphide reacting to produce 6 moles of proton. whereas the concentration of Bi2S3 is not considered as it is present in solid phase.
Answer:
Convex mirrors are more study than flat mirrors.
Explanation:
This is the correct answer because i have already studied this