88.98 %
The Balance Chemical Equation is as follow,
2 HCl + Pb(NO₃)₂ → 2 HNO₃ + PbCl₂
According to equation,
331.2 g (1 mole) Pb(NO₃)₂ produces = 278.1 g (1 mole) PbCl₂
So,
870 g of Pb(NO₃)₂ will produce = X g of PbCl₂
Solving for X,
X = (870 g × 278.1 g) ÷ 331.2 g
X = 730.5 g of PbCl₂
Therefore,
Theoretical Yield = 730.5 g
Also as given,
Actual Yield = 650 g
So using following formula for percentage yield,
%age Yield = (Actual Yield / Theoretical Yield) × 100
Putting values,
%age Yield = (650 g / 730.5 g) × 100
%age Yield = 88.98 %
Brianliest please and thank you.
Am letting the picture doing the talk.
The symbol for xenon (xe) would be a part of the noble gas notation for the element cesium.
For writing the electronic configuration of any element by using the preceding noble gas configuration, we simply use the symbols of noble gas belongs to the previous period of that particular elements. We can't use the symbol of noble gas of same period from which the element belong.
A is the wrong option because the noble gas in the preceding period to the period from which antimony belongs is krypton.
The actual electronic configuration of antimony is as follow:
[Kr] 4d10 5s2 5p3
B is correct option because the noble gas in the preceding period to the period from which Cesium belongs is Xenon.
The actual electronic configuration of Cesium is as follow:
[Xe] 6s1
Thus, we concluded that the symbol for xenon (xe) would be a part of the noble gas notation for the element cesium.
learn more about Noble gas:
brainly.com/question/2094768
#SPJ4
The answer is
option D "CO." Co also known as
Cobalt is the 27th element on the periotic table. It was discovered in <span>1735, it's boiling point is 3200 k.</span>
Atomic mass: 58.9332
Protons: 27
Neutrons: 32
Electrons: 27
Hope this helps!
Answer: The given statement is true.
Explanation:
According to the Dalton's law, total pressure of a mixture of gases that do not react with each other is equal to the partial pressure exerted by each gas.
The relationship is as follows.

or, 
where,
....... = partial pressure of individual gases present in the mixture
Also, relation between partial pressure and mole fraction is as follows.

where,
= mole fraction
Thus, we can conclude that the statement Dalton's law of partial pressures states that the total pressure exerted by a mixture of gases is the sum of the pressures exerted independently by each gas in the mixture, is true.