A circuit breaker must be replaced after too much current flowing through it causing it to melt.
The mass of 254 mL of water is 254 g. Since the density of water is 1g/mL, we can simply multiply the density 1g/mL by 254 mL of water and get 254 g as our answer. Since mL is in the numerator and denominator, mL cancels out and we are left with g only.
Answer:
3M
Explanation:
Molarity is one of the measures of the molar concentration of a solution, which can be calculated by using the formula below:
Molarity = number of moles ÷ volume
From the information given in this question, 4 liters of a solution contains 12 moles of sugar. This means that n = 12mol and V = 4L
Molarity = n/V
Molarity = 12/4
Molarity = 3
Hence, the molarity of the sugar solution is 3mol/L or 3M
Answer:
<em>What can be added to an atom to cause a nonvalence electron in the atom to temporarily become a valence electron </em>is<u><em> energy</em></u><em>.</em>
Explanation:
The normal state of the atoms, where all the electrons are occupying the lowest possible energy level, is called ground state.
The <em>valence electrons</em> are the electrons that occupy the outermost shell, this is the electrons in the highest main energy level (principal quantum number) of the atom.
So, a <em>nonvalence electron</em> occupies an orbital with less energy than what a valence electron does; in consequence, in order to a nonvalence electron jump from its lower energy level to the higher energy level of a valence electron, the former has to absorb (gain) energy.
This new state is called excited state and is temporary: the electron promoted to the higher energy level will emit the excess energy, in the form of light (photons), to come back to the lower energy level and so the atom return to the ground state.