Answer:
The magnitude of the velocity of glider B is 0.2m/s and the direction is the negative direction
Explanation:
Inelastic Collision
Given data
mass of glider A m1= 0.125kg
initial velocity u1=0
final velocity v1= 0.600 m/s
mass of glider B m2= 0.375kg
initial velocity u2=0
final velocity v2=?
We know that the expression for the conservation of momentum is given as
m1u1+m2u2=m1v1+m2v2
since u1=u2=u=0m/s
u(m1+m2)=m1v1+m2v2
substituting we have
0(0.125+0.0375)=0.125*0.6+0.375*v2
0=0.075+0.375v2
0.375v2=-0.075
v2=-0.075/0.375
v2=-0.2m/s
The magnitude of the velocity of glider B is 0.2m/s and the direction is the negative direction
Answer:
<h3> b. 1.18</h3>
Explanation:
The fundamental frequency in string is expressed as;
F1 = 1/2L√T/m .... 1
L is the length of the string
T is the tension
m is the mass per unit length
If the tension is increased by 40%, the new tension will be;
T2 = T + 40%T
T2 = T + 0.4T
T2 = 1.4T
The new fundamental frequency will be;
F2 = 1/2L√1.4T/m ..... 2
Divide 1 by 2;
F2/F = (1/2L√1.4T/m)/1/2L√T/m)+
F2/F = √1.4T/m ÷ √T/m
F2/F = √1.4T/√m ×√m/√T
F2/F = √1.4T/√T
F2/F = 1.18√T/√T
F2/F = 1.18
F2 = 1.18F
Hence the fundamental frequency of vibration changes by a factor of 1.18
F=ma
Therefore the net force = 1000kg × 2 metres per second per second
So F=2000 N
13 year old and the light year mean cell of moucles that can use simple year light diffusion
The best and most correct answer among the choices provided by your question is the second choice.
<span>The major contributions of Maury included mapping the ocean bottom.</span>
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!