There are two different ways to understand time and these are:
A. What time is it?
B. How much time?
The examples of these two different ways are:
A. What time is it? The best example that would help us understand and know what time are the clock and the calendar. This gives us the exact hour, minutes and seconds. The calendar tells us the exact day, month and year.
B. How much time? This makes us understand how much time did it take from the starting time. An example for this would be a stopwatch.
Answer:
(A) The speed just as it left the ground is 30.25 m/s
(B) The maximum height of the rock is 46.69 m
Explanation:
Given;
weight of rock, w = mg = 20 N
speed of the rock at 14.8 m, u = 25 m/s
(a) Apply work energy theorem to find its speed just as it left the ground
work = Δ kinetic energy
F x d = ¹/₂mv² - ¹/₂mu²
mg x d = ¹/₂m(v² - u²)
g x d = ¹/₂(v² - u²)
gd = ¹/₂(v² - u²)
2gd = v² - u²
v² = 2gd + u²
v² = 2(9.8)(14.8) + (25)²
v² = 915.05
v = √915.05
v = 30.25 m/s
B) Use the work-energy theorem to find its maximum height
the initial velocity of the rock = 30.25 m/s
at maximum height, the final velocity = 0
- mg x H = ¹/₂mv² - ¹/₂mu²
- mg x H = ¹/₂m(0) - ¹/₂mu²
- mg x H = - ¹/₂mu²
2g x H = u²
H = u² / 2g
H = (30.25)² / 2(9.8)
H = 46.69 m
Answer:
a) T = 608.22 N
b) T = 608.22 N
c) T = 682.62 N
d) T = 533.82 N
Explanation:
Given that the mass of gymnast is m = 62.0 kg
Acceleration due to gravity is g = 9.81 m/s²
Thus; The weight of the gymnast is acting downwards and tension in the string acting upwards.
So;
To calculate the tension T in the rope if the gymnast hangs motionless on the rope; we have;
T = mg
= (62.0 kg)(9.81 m/s²)
= 608.22 N
When the gymnast climbs the rope at a constant rate tension in the string is
= (62.0 kg)(9.81 m/s²)
= 608.22 N
When the gymnast climbs up the rope with an upward acceleration of magnitude
a = 1.2 m/s²
the tension in the string is T - mg = ma (Since acceleration a is upwards)
T = ma + mg
= m (a + g )
= (62.0 kg)(9.81 m/s² + 1.2 m/s²)
= (62.0 kg) (11.01 m/s²)
= 682.62 N
When the gymnast climbs up the rope with an downward acceleration of magnitude
a = 1.2 m/s² the tension in the string is mg - T = ma (Since acceleration a is downwards)
T = mg - ma
= m (g - a )
= (62.0 kg)(9.81 m/s² - 1.2 m/s²)
= (62.0 kg)(8.61 m/s²)
= 533.82 N
It is the subtance betwen the person or the object
Equation: Mass x Velocity = Momentum
Answer: 93 x 13 = 1,209