Answer:
a) 
b) 
Explanation:
a)
Given:
amount of heat transfer occurred,
initial temperature of car, 
final temperature of car, 
We know that the change in entropy is given by:

(heat is transferred into the system of car)

b)
amount of heat transfer form the system of house,
initial temperature of house, 
final temperature of house, 



Work done by a given force is given by

here on sled two forces will do work
1. Applied force by Max
2. Frictional force due to ground
Now by force diagram of sled we can see the angle of force and displacement
work done by Max = 

Now similarly work done by frictional force



Now total work done on sled


The glowing beam was repelled by a negatively charged plate because they were negatively charged
<h3>What are the nature of charges?</h3>
The nature of charges refers to the properties of charges.
There are two types of charges:
- negative charges
- positive charges
The law of electricity states that opposite charges attract whereas like charges repel.
Therefor, in Thomson’s experiment, the glowing beam was repelled by a negatively charged plate because they were negatively charged
In conclusion, like charges repel while opposite charges attract.
Learn more about charges at: brainly.com/question/12781208
#SPJ1
That's two different things it depends on:
-- surface area exposed to the air
AND
-- vapor already present in the surrounding air.
Here's what I have in mind for an experiment to show those two dependencies:
-- a closed box with a wall down the middle, separating it into two closed sections;
-- a little round hole in the east outer wall, another one in the west outer wall,
and another one in the wall between the sections;
So that if you wanted to, you could carefully stick a soda straw straight into one side,
through one section, through the wall, through the other section, and out the other wall.
-- a tiny fan that blows air through a tube into the hole in one outer wall.
<u>Experiment A:</u>
-- Pour 1 ounce of water into a narrow dish, with a small surface area.
-- Set the dish in the second section of the box ... the one the air passes through
just before it leaves the box.
-- Start the fan.
-- Count the amount of time it takes for the 1 ounce of water to completely evaporate.
=============================
-- Pour 1 ounce of water into a wide dish, with a large surface area.
-- Set the dish in the second section of the box ... the one the air passes through
just before it leaves the box.
-- Start the fan.
-- Count the amount of time it takes for the 1 ounce of water to completely evaporate.
=============================
<span><em>Show that the 1 ounce of water evaporated faster </em>
<em>when it had more surface area.</em></span>
============================================
============================================
<u>Experiment B:</u>
-- Again, pour 1 ounce of water into the wide dish with the large surface area.
-- Again, set the dish in the second half of the box ... the one the air passes
through just before it leaves the box.
-- This time, place another wide dish full of water in the <em>first section </em>of the box,
so that the air has to pass over it before it gets through the wall to the wide dish
in the second section. Now, the air that's evaporating water from the dish in the
second section already has vapor in it before it does the job.
-- Start the fan.
-- Count the amount of time it takes for the 1 ounce of water to completely evaporate.
==========================================
<em>Show that it took longer to evaporate when the air </em>
<em>blowing over it was already loaded with vapor.</em>
==========================================