Answer:
<em>Plane Motion</em>
<em>Plane Motion One of the most common examples of motion in a plane is Projectile motion.</em>
Answer:
5,970 N
Explanation:
m = 597 kg
a = 10 m/s^2
Plug those values into the following equation:
F = ma
F = (597 kg)(10 m/s^2)
F = 5,970 N
Answer:
Energy, E = 178.36 J
Explanation:
It is given that,
Mass 1, 
Mass 2, 
Mass 3, 
Height from which they are dropped, h = 1.3 m
Let m is the energy used by the clock in a week. The energy is equal to the gravitational potential energy. It is given by :


E = 178.36 J
So, the energy used by the clock in a week is 178.36 Joules. Hence, this is the required solution.
Well i had the same question on my test, and when the graph in 2.5 seconds goes up from the equilibrium it reaches a positive maximum, so that would be your answer.
b. positive maximum
Answer:
Weight
Explanation:
"An object will float if the buoyancy force exerted on it by the fluid balances its weight, i.e. if FB=mg F B = mg . But the Archimedes principle states that the buoyant force is the weight of the fluid displaced. So, for a floating object on a liquid, the weight of the displaced liquid is the weight of the object."
Hope this helps! :)