Explanation:
The linear analog of angle is angle itself.
The linear analog of angular velocity is linear velocity.
ω is angular velocity, therefore linear velocity is given by v
∴ for linear velocity, 
for angular velocity,
The linear analog of angular acceleration is acceleration.
α is angular acceleration whereas as a is linear acceleration.
∴ for linear acceleration, v = u + a.t
for angular acceleration, 
The linear analog of moment of inertia is mass.
I is moment of inertia and m is mass,
∴ for linear analog, F = m.a
for angular analog, τ - I.α
Answer:
As given in the problem statement
frequency=1 KHz=1*10^3 Hz
V(t) is represented as
v(t) = 5sin(2 \pi 1000t) + 0.05sin(2 \pi 3000t)
v ( t ) = 5 s i n ( 2 π 1000 t ) + 0.05 s i n ( 2 π 3000 t )
Total harmonic distortion will be 234 Pi
Answer:
T = 188.5 s, correct is C
Explanation:
This problem must be worked on using conservation of angular momentum. We define the system as formed by the fan and the paper, as the system is isolated, the moment is conserved
initial instant. Before the crash
L₀ = r m v₀ + I₀ w₀
the angular speed of the fan is zero w₀ = 0
final instant. After the crash
L_f = I₀ w + m r v
L₀ = L_f
m r v₀ = I₀ w + m r v
angular and linear velocity are related
v = r w
w = v / r
m r v₀ = I₀ v / r + m r v
m r v₀ = (I₀ / r + mr) v
v = 
let's calculate
v = 
v = 
v = 0.02 m / s
To calculate the time of a complete revolution we can use the kinematics relations of uniform motion
v = x / T
T = x / v
the distance of a circle with radius r = 0.6 m
x = 2π r
we substitute
T = 2π r / v
let's calculate
T = 2π 0.6/0.02
T = 188.5 s
reduce
t = 188.5 s ( 1 min/60 s) = 3.13 min
correct is C
Supposing the runner is condensed to a point and moves upward at 2.2 m/s.
It takes a time = 2.2/g = 2.2/9.8 = 0.22 seconds to increase to max height.
Now looking at this condition in opposite - that is the runner is at max height and drops back to earth in 0.22 s (symmetry of this kind of motion).
From what height does any object take 0.22 s to fall to earth (supposing there is no air friction)?
d = 1/2gt²= (0.5)(9.8)(0.22)²= 0.24 m