1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Maru [420]
3 years ago
12

What set of transformations are applied to parallelogram ABCD to create A'B'C'D'?

Mathematics
2 answers:
Verdich [7]3 years ago
7 0

Solution:

The information about the two parallelograms, one called Pre image (A B CD) and other called image (A'B'C'D').

Parallelogram formed by ordered pairs A at negative 4, 1, B at negative 3, 2, C at negative 1, 2, D at negative 2, 1. Second parallelogram transformed formed by ordered pairs A prime at negative 4, negative 1, B prime at negative 3, negative 2, C prime at negative 1, negative 2, D prime at negative 2, negative 1.

→As, the distance between X axis , that is distance of Preimage from X axis is same as distance of image from X axis.So,it is case of reflection over X axis.

→The two parallelogram ABCD and A'B'C'D' are congruent.So,Dilation hasn't taken place.Nor translation.

Option (B) →Reflected over the y-axis and rotated by 180° might be true.

pentagon [3]3 years ago
6 0

Answer: <u><em>Option (B)</em></u> →Reflected over the y-axis and rotated by 180° might be true.

You might be interested in
In the adjoining figure, XY = XZ . YQ and ZP are the bisectors of <img src="https://tex.z-dn.net/?f=%20%5Cangle" id="TexFormula1
svetlana [45]

Answer:

See Below.

Step-by-step explanation:

Statements:                                              Reasons:

1)\, XY=XZ                                              Given

2) \text{ $ m\angle Y= m\angle Z$}                                        Isosceles Triangle Theorem

\displaystyle 3) \text{ $m\angle Y=m\angle XYQ + \angle QYZ$}                  Angle Addition

\displaystyle 4)\text{ $YQ$ bisects $\angle XYZ$}                               Given

5) \text{ $m\angle XYQ=m\angle QYZ$}                           Definition of Bisector

\displaystyle 6)\text{ $m\angle Y=2m\angle QYZ$}                               Substitution

7)\text{ $m\angle Z=m\angle XZP+m\angle PZY$}              Angle Addition

8)\text{ $ZP$ bisects $\angle XZY$}                              Given

\displaystyle 9) \text{ $m\angle XZP=m\angle PZY$ }                          Definition of Bisector

\displaystyle 10) \text{ $ m\angle Z = 2m\angle PZY $}                            Substitution

11)\text{ } 2m\angle QYZ=2m\angle PZY                    Substitution

12)\text{ }m\angle QYZ=m\angle PZY                        Division Property of Equality

13)\text{ } YZ=YZ                                         Reflexive Property

14)\text{ } \Delta YZP\cong\Delta ZYQ                             Angle-Side-Angle Congruence*

15)\text{ } YQ=ZP                                         CPCTC

*For clarification:

∠Y = ∠Z

YZ = YZ (or ZY)

∠PZY = ∠QYZ

So, Angle-Side-Angle Congruence:

ΔYZP is congruent to ΔZYQ

5 0
3 years ago
Read 2 more answers
* Use order of operations to solve the following.
Bingel [31]
The answer is 100 if that 5 and 2 is separate
3 0
3 years ago
Read 2 more answers
Evaluate the surface integral:S
rjkz [21]
Assuming S does not include the plane z=0, we can parameterize the region in spherical coordinates using

\mathbf r(u,v)=\left\langle3\cos u\sin v,3\sin u\sin v,3\cos v\right\rangle

where 0\le u\le2\pi and 0\le v\le\dfrac\pi/2. We then have

x^2+y^2=9\cos^2u\sin^2v+9\sin^2u\sin^2v=9\sin^2v
(x^2+y^2)=9\sin^2v(3\cos v)=27\sin^2v\cos v

Then the surface integral is equivalent to

\displaystyle\iint_S(x^2+y^2)z\,\mathrm dS=27\int_{u=0}^{u=2\pi}\int_{v=0}^{v=\pi/2}\sin^2v\cos v\left\|\frac{\partial\mathbf r(u,v)}{\partial u}\times \frac{\partial\mathbf r(u,v)}{\partial u}\right\|\,\mathrm dv\,\mathrm du

We have

\dfrac{\partial\mathbf r(u,v)}{\partial u}=\langle-3\sin u\sin v,3\cos u\sin v,0\rangle
\dfrac{\partial\mathbf r(u,v)}{\partial v}=\langle3\cos u\cos v,3\sin u\cos v,-3\sin v\rangle
\implies\dfrac{\partial\mathbf r(u,v)}{\partial u}\times\dfrac{\partial\mathbf r(u,v)}{\partial v}=\langle-9\cos u\sin^2v,-9\sin u\sin^2v,-9\cos v\sin v\rangle
\implies\left\|\dfrac{\partial\mathbf r(u,v)}{\partial u}\times\dfrac{\partial\mathbf r(u,v)}{\partial v}\|=9\sin v

So the surface integral is equivalent to

\displaystyle243\int_{u=0}^{u=2\pi}\int_{v=0}^{v=\pi/2}\sin^3v\cos v\,\mathrm dv\,\mathrm du
=\displaystyle486\pi\int_{v=0}^{v=\pi/2}\sin^3v\cos v\,\mathrm dv
=\displaystyle486\pi\int_{w=0}^{w=1}w^3\,\mathrm dw

where w=\sin v\implies\mathrm dw=\cos v\,\mathrm dv.

=\dfrac{243}2\pi w^4\bigg|_{w=0}^{w=1}
=\dfrac{243}2\pi
4 0
3 years ago
Find x! Please help!!
a_sh-v [17]

{(8 + x)}^{2}  =  {8}^{2}  +  {15}^{2}  \\ {(8 + x)}^{2}  =  64  +  225 \\  {(8 + x)}^{2}  = 289 \\ {(8 + x)}^{2}  =  {17}^{2}  \\ 8 + x = 17 \\ so \: x = 17 - 8 = 9
5 0
3 years ago
Please help me with this i beg of u plzzzzz
yarga [219]

Step-by-step explanation:

hope you get idea of graphing the four lines

8 0
3 years ago
Other questions:
  • plz help quick i will give brainliest to the first person to answer: The equation a = 180x(n-2)/n represents the angle measures,
    7·2 answers
  • A small plane is flying a banner in the shape of a rectangle. The area of the banner is 144 square feet . The width of the banne
    11·1 answer
  • The percentage of 12.10 out of 58.60​
    9·2 answers
  • (-5qsquaredp) to the 8th power
    12·1 answer
  • What is the y-intercept of the graph of the equation y=4(3x)?
    11·2 answers
  • I have been given the short leg in this 30-60-90 triangle. How do I find the long leg?
    9·1 answer
  • Please help this is a REALLY BIG test please guysss
    12·1 answer
  • Here is the Triangle <br><br> What is the measure of angle A?
    8·1 answer
  • Rob's first four test scores are 80, 85, 100 and 85. What does he have to score on the last test in order to have a test average
    12·1 answer
  • Find the equation of the line containing the points (20,-7) and (10,-2). Type your answer in this order and don't use spaces or
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!