Answer:
B-105.4 min
explanation
i just learned that just now
Answer:
A
Step-by-step explanation:
We know that
in the triangle TQS
<span>applying the Pythagorean theorem
QS</span>²=TS²+TQ²---------> TQ²=QS²-TS²--------> TQ²=18²-9x²-----> equation 1
in the triangle TRS
TS²=TR²+RS²--------------> TR²=TS²-RS²-------> TR²=9x²-144----> equation 2
in the triangle QTR
TQ²=TR²+36-----------> equation 3
<span>I substitute 1 and 2 in 3
</span>18²-9x²=9x²-144+36--------> 18x²-432=0------> x²=24-------> x=√24
x=2√6
TS=3*x------> 3*2√6-----> 6√6
TS=6√6 units
the answer is
TS=6√6 units
<span>6 is the square root of 6 units</span>
{\text{Direction of parabola depends on the sign of quadratic coefficient of a }} \hfill \\
{\text{quadratic equation}}. \hfill \\
{\text{For given quadratic equation}}. \hfill \\
a{x^2} + bx + c = 0 \hfill \\
{\text{The parabola is in the upward direction if }}a{\text{ }} > {\text{ }}0{\text{ and in downward direction if }}a < 0 \hfill \\
{\text{Here, the equation of given parabola is }} \hfill \\
{x^2} - 6x + 8 = y \hfill \\
\Rightarrow y = \left( {{x^2} - 6x + 9} \right) - 9 + 8 \hfill \\
\Rightarrow y = {\left( {x - 3} \right)^2} - 1. \hfill \\
{\text{Thus, the parabola is in the upward direction}} \hfill \\