Phosphoric acid has 3 pKa values (pKa1=2.1, pKa2=6.9, pKa3= 12.4) and after 3 ionization it gives 3 types of ions at different pKa values:
H₃PO₄(aq) + H₂O(l) ⇌ H₃O⁺(aq) + H₂PO₄⁻ (aq) pKₐ₁
<span>
</span>H₂PO₄⁻(aq) + H₂O(l) ⇌ H₃O⁺(aq) + HPO₄²⁻ (aq) pKₐ₂
HPO₄²⁻(aq) + H₂O(l) ⇌ H₃O⁺(aq) + PO₄³⁻ (aq) pKₐ₃
The last equilibrium is associated with the highest pKa value (12.4) of phosphoric acid. There the last OH group will lose its hydrogen and hydrogen phosphate ion (HPO₄²⁻) turns into phosphate ion (PO₄³⁻).
The grams of glucose are needed to prepare 400g of a 2.00%(m/m) glucose solution g is calculated as below
=% m/m =mass of the solute/mass of the solution x100
let mass of solute be represented by y
mass of solution = 400 g
% (m/m) = 2% = 2/100
grams of glucose is therefore =2/100 = y/400
by cross multiplication
100y = 800
divide both side by 100
y= 8.0 grams
P is momentum f is force and m is mass
C. soil. If this isn’t C it’s definitely B.