1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jok3333 [9.3K]
3 years ago
7

How many atoms are in 25.00 g of B?

Chemistry
1 answer:
klio [65]3 years ago
8 0

Answer:

There are 1.393 x 10²⁴ atoms in 25.00 g of B.

Explanation:

Hey there!

We are given a value, in grams, that we need to convert to a number of atoms.

We can convert grams to atoms by using Avogadro's Number (N_A). This number is equivalent to 6.022 \times 10^{23}.

This number can be used to convert any values to:

  • atoms
  • molecules
  • formula units
  • moles

In order to do this problem, we will need to use dimensional analysis (DA). This process allows us to convert from grams to atoms.

We need to set up our ratios in order to work this out. We can use a periodic table to help us through this next part of the problem.

<u>1. Locating the number of moles of B in the sample</u>

We first need to find the amount of moles of boron (B) there are in the sample.

Checking a periodic table, the atomic mass in atomic mass units (amu) is 10.81 amu.

  • Atomic mass units can easily be converted to grams and these units can be used interchangeably.

Therefore, for each atom of boron, it weighs 10.81 grams to us. This is equivalent to the mass of one mole of boron.

To find the number of moles, we have two possible ratios we can use:

  • \displaystyle \frac{1 \ mole \ B}{10.81 \ grams \ B}
  • \displaystyle \frac{10.81 \ grams \ B}{1 \ mole \ B}

These ratios mean the same thing, but we need to convert our final unit to moles.

We are given a sample in grams, and when dividing our units, we need to keep moles.

Since the first portion of our expression is in grams, we need to have grams in the bottom of our expression.

  • \displaystyle 25.00 \ \text{grams B} \ \times \frac{1 \text{mole B}}{10.81 \ \text{grams B}}

We can now simplify the expression. Our <u>grams B</u> unit will cancel out, so we are therefore left with <u>moles B</u> remaining.

<u>2. Locating the number of atoms in the sample</u>

Now with our equation, we can convert our number of moles that would be solved if we stopped with the above. However, we need to convert to atoms.

We use Avogadro's number and create a ratio with that of moles.

  • \displaystyle \frac{6.022 \times 10^{23}\text{atoms}}{1 \text{mole B}}
  • \displaystyle \frac{1 \text{mole B}}{6.022 \times 10^{23} \text{atoms}}

We need to cancel out our moles and end with atoms, so we must have moles in the denominator. Therefore, we use the first ratio.

Using our previous expression, we multiply by this new ratio and solve the expression.

  • \displaystyle 25.00 \ \text{grams B} \ \times \frac{1 \text{mole B}}{10.81 \ \text{grams B}} \ \times \frac{6.022 \times 10^{23}\text{atoms}}{1 \text{mole B}}

This expression can now be operated. You will need a calculator to perform this calculation.

<u>Our numerator is:</u>

  • [(25.00 \times 1 \times (6.022 \times 10^{23})]

Plugging this into a calculator, we get:

  • 1.5055 \times 10^{25}

<u>Our denominator is:</u>

  • (1 \times 10.81 \times 1)

This simplifies to:

  • 10.81

<u>Dividing our numerator and denominator:</u>

  • <u />\displaystyle \frac{1.5055 \times 10^{25}}{10.81}<u />

Plugging this into a calculator, we get:

  • 1.392691952 \times 10^{24}

<u>3. Simplifying with significant figures</u>

Now, we need to take into account that we have significant figures. We are given this original value:

  • 25.00

This value has four significant figures, which means we need to round our value we received above to four significant figures.

  • \approx 1.393

Our units are added as well as our scientific notation:

  • 1.393 \times 10^{24} \ \text{atoms of B}

Therefore, our final answer is choice A.

You might be interested in
mage result for alz... Warm-Up Exercises for Chapter 2 - Acid-Base Reactions roblem 2.3 H2O is the acid and NH2 is the base. Exp
laila [671]
Type this question into apex learning! Gives you answer and step by step explanation
5 0
3 years ago
What is the answer? <br><br> NO LINKS!!
jek_recluse [69]
Liquid? maybe, its really inbetween if you get what i mean
5 0
3 years ago
On a potential energy diagram for the following processes, which of the following has an increase in entropy?
daser333 [38]
Hello,

I believe that your answer would be <span>B. water freezes
</span>Hope this helps
7 0
3 years ago
Read 2 more answers
Write the symbol for the monatomic ion that has a charge of 1– and the condensed electron configuration [ne]3s23p6.
Pani-rosa [81]
<span>Answer is: the symbol is Cl.
[Ne ] 3s</span>² 3p⁶ is electric configuration of noble gas argon, neon (Ne) has10 electrons plus 6 electrons in 3s and 3p orbitals. Neutral atom of m<span>onatomic ion that has a charge of 1– has one electron less than argon, so that atom (chlorine) has 17 electrons. Charge of 1- means one electron more for ion: 17 + 1 = 18.

</span>
3 0
3 years ago
Read 2 more answers
Without consulting Appendix B, arrange each group in order of increasing standard molar entropy (S°). Explain.(c) SF₆(g), SF₄(g)
Andre45 [30]

The increasing order of standard molar entropy (S°) is as follow:

SF₄(g) < SF₆(g) < S₂F₁₀(g)

<h3>What is Entropy? </h3>

Entropy is defined as the randomness of the particle. It depends on temperature and pressure or number of particle per unit volume.

It is directly proportional to the temperature and pressure of the gas.

<h3>What is Standard Molar Entropy? </h3>

The standard molar entropy is defined as the entropy content of the one mole of pure substance at the standard state of temperature and pressure of interest.

The standard molar entropy is also defined as the total amount of entropy which 1 mole of the substance acquire, as it is brought from 0K to standard conditions of temperature and pressure.

The standard molar entropy depends on the molas mass of atom, molecules or compound.

SF₄(g) has lower standard molar entropy. Due to less complexity of this molecules.

While, complexity increases from SF₆(g) to S₂F₁₀(g). Therefore, the standard molar entropy of S₂F₁₀(g) is greater than SF₆(g).

Thus, we concluded that the increasing order of standard molar entropy (S°) is as follow:

SF₄(g) < SF₆(g) < S₂F₁₀(g)

learn more about standard molar entropy:

brainly.com/question/15908262

#SPJ4

7 0
2 years ago
Other questions:
  • Hno3 is an Arrhenius what
    15·1 answer
  • What is the electron configuration for ground-state Boron
    6·1 answer
  • The hydrogen ion concentration of a vinegar solution is 0.00010 m. how is this concentration written in scientific notation?
    10·2 answers
  • How many significant figures are in 15200 mL
    15·1 answer
  • In what way is psychology connected to the natural sciences and different than other social sciences?
    6·1 answer
  • What biological molecule that is used for energy is represented by the structure below?
    13·1 answer
  • Which is best illustrated by Watson and Crick's ball and stick model of dna
    7·1 answer
  • How large would the state of New York (235 miles across) be?
    8·1 answer
  • 2 A + 4 B → 2 C How many mol of B must react with excess A to produce 2 mol of C?
    15·1 answer
  • the ground-state valence-shell configuration of a particular atom is 4d105s25p1. the element to which this atom belongs is a
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!