A= -5 is the correct answer
False because to find a reciprocal u gotta divide that number by one (example: 1 divided by 8 is 1/8) there you go , so therefore the answer is false. :)
The answer would be 7y+35
bearing in mind that perpendicular lines have negative reciprocal slopes, so
![\bf \begin{array}{|c|ll} \cline{1-1} slope-intercept~form\\ \cline{1-1} \\ y=\underset{y-intercept}{\stackrel{slope\qquad }{\stackrel{\downarrow }{m}x+\underset{\uparrow }{b}}} \\\\ \cline{1-1} \end{array}~\hspace{10em}\stackrel{slope}{y=\stackrel{\downarrow }{-\cfrac{1}{3}}x-1} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20%5Cbegin%7Barray%7D%7B%7Cc%7Cll%7D%20%5Ccline%7B1-1%7D%20slope-intercept~form%5C%5C%20%5Ccline%7B1-1%7D%20%5C%5C%20y%3D%5Cunderset%7By-intercept%7D%7B%5Cstackrel%7Bslope%5Cqquad%20%7D%7B%5Cstackrel%7B%5Cdownarrow%20%7D%7Bm%7Dx%2B%5Cunderset%7B%5Cuparrow%20%7D%7Bb%7D%7D%7D%20%5C%5C%5C%5C%20%5Ccline%7B1-1%7D%20%5Cend%7Barray%7D~%5Chspace%7B10em%7D%5Cstackrel%7Bslope%7D%7By%3D%5Cstackrel%7B%5Cdownarrow%20%7D%7B-%5Ccfrac%7B1%7D%7B3%7D%7Dx-1%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)

so we're really looking for a line whose slope is 3 and runs through (1,5)

The correct answer should be B: y = -3x + 2.
Since the line crosses the y axis at 2, your y-intercept should be 2. Using rise over run you can compare the equations to the graph. If you convert 3x to a fraction, it would be 3/1x. Since the line is going down 3 and the rise of the y = -3x + 2 is -3, that part is correct. The line also moves over 1 unit, so the run is 1, therefore the correct slope would be -3 or -3/1. Now if you combine what you have it should be y = -3x - 2, which is the same equation as B.