1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vladimir79 [104]
3 years ago
15

In a given reversible process, the temperature of an ideal gas is kept constant as the gas is compressed to a smaller volume. Wh

ich of the following statements is true regarding this process?
A. The gas must absorb heat from its surroundings.
B. The gas must release heat to its surroundings.
C. The pressure of the gas also stays constant.
D. The process is adiabatic.
Physics
1 answer:
sesenic [268]3 years ago
7 0

Answer:

B. The gas must release heat to its surroundings.

Explanation:

Since the process is reversible , it must be slow . Since temperature is kept constant so the internal energy is constant , Since volume is decreased , pressure must be increased. Since work is done on the gas ( gas is compressed )  , so heat must be released by the gas so that its internal energy remains constant.

You might be interested in
If the Sun subtends a solid angle Ω on the sky, and the flux from the Sun just above the Earth’s atmosphere, integrated over all
Arada [10]

Answer:

A)Ω = 7.8 × 10^−5 steradians.

B) TE = 5800K

C) fλ(λ1) = (π ^2 ) /ΩBλ(T)

Explanation:

A) First of all, if we assume that the Sun emits isotropically at a luminosity (L⊙) , the flux at a given distance R from the sun would be f(d) = L⊙/ (4πd^2)

The ratio of flux at the solar photosphere to the flux at the Earth’s atmosphere would be: F⊙/{f(d⊙)} = (R⊙)^2 / (d⊙)^2

Now if we think of this relationship of the flux and the earth as a conical pattern, we'll deduce that the solid angle subtended by the sun at Earth’s surface to be;

Ω = π[(R⊙)^2 / (d⊙)^2]

Combining this with the ratio earlier gotten, well arrive at;

F⊙ = {f(d⊙ )π} /Ω

Now let's express The radius of the sun (R) in terms of its angular diameter (2α) and this gives;

R⊙ ≈ αd⊙

Now combining this with the equation for Ω earlier, we get;

Ω ≈ πα^2

So, = π((0.57/2π) /180)^2 = 7.8 × 10^−5 steradians.

B) from Stefan-Boltzmann Law,

F⊙ = σ(TE)^4

From the beginning, we know that;

F⊙ = {f(d⊙ )π} /Ω

And so replacing that in the stephan boltzmann law, we get ;

{f(d⊙ )π} /Ωσ = (TE)^4

So, (TE)^4 = {π (1.4 kWm^(−2))} / [(7.8 × 10^(−5 ) steradians x (5.66961 × 10^(−8))]

In stephan boltzmann law, σ = 5.66961 × 10^(−8)

And so, TE is approximately 5800K.

C) In order to relate fλ(λ1) with T, let's assume the sun’s surface to be an isotropically emitting blackbody, i.e its specific intensity is Iλ = Bλ(T). Hence, the flux at Sun’s surface for a given wavelength would be;

Fλ(λ1) = πBλ(T)

Now, if we combine this with the expression of F⊙ gotten earlier, well get the relation;

fλ(λ1) = (π ^2 ) /ΩBλ(T)

7 0
3 years ago
In----- theory, the actual wishes that are threatening to the dreamers conscious awareness are disguised
Mandarinka [93]

Answer:

Unconscious wish fulfillment

Explanation:

Unconscious wish fulfillment

(In the unconscious wish fulfillment theory, the actual wishes of the dreamer that are threatening to the dreamer's conscious awareness are disguised.)

7 0
3 years ago
Define heat capacity of a substance.<br>Write the S.I unit of heat capacity.​
creativ13 [48]

Define heat capacity of a substance:

  • The heat capacity of a substance can be defined as the amount of heat required to change its temperature by one degree.

Write the S.I unit of heat capacity:

  • Joule per Kelvin

\:  \:  \:

  • Joule per Celsius

\:  \:  \:

\:  \:  \:

\:  \:  \:

\:  \:  \:

\:  \:  \:

\:  \:  \:

\:  \:  \:

\:  \:  \:

-,-

6 0
2 years ago
A pyrotechnical releases a 3 kg firecracker from rest. at t=0.4 s, the firecracker is moving downward with a speed 4 m/s. At the
olga2289 [7]

Answer:

a) F = 30 N, b)   I = 12 N s , c)  I = -12 N s , d) ΔI = 0 N s

Explanation:

This exercise is a case at the moment, let's define the system formed by the firecracker and its two parts, in this case the forces during the explosion are internal and the moment is conserved

Initial, before the explosion

     p₀ = m v

The speed can be found by kinematics

     v = v₀ - g t

     v = 0 - 10 0.4

     v = -4.0 m / s

Final after division

     pf = m₁ v₁f + m₂ v₂f

    p₀ = pf

    M v = m₁ v₁f + m₂ v₂f

Where M is the initial mass (M = 3 kg), m₁ is the mass mtop (m₁ = 1 kg) and m₂ in the mass m botton (m₂ = 2kg) and the piece that moves up (v₁f = 6m/s )

a) before the explosion the only force acting on the body is gravity

     F = mg

     F = 3 10 = 30 N

b) The expression for momentum is

     I = Ft

Before the explosion the only force that acts is the weight

    I = mg t

    I = 3 10 0.4

    I = 12 N s

c) To calculate this part we use the conservation of the moment and calculate the speed of the body that descends body 2

    M v = m₁ v₁f + m₂ v₂f

    v₂f = (M v - m₁ v₁f) / m₂

    v₂f = (3 (-4) - 1 6) / 2

   v₂f = - 9 m / 2

The negative sign indicates that body 2 (botton) is descending

Now we can use the momentum and momentum relationship for the body during the explosion

    I = F t = Dp

   F t = pf –po)

   F t= [m₁ v₁f + m₂ v₂f]

   

   I = [1 6 + 2 (-9) -0]

   I = -12 N s

This is the impulse during the explosion the negative sign indicates that it is headed down

d) impulse change

I₀ = Mv

I₀ = 3 *4

I₀ =-12 N s

 ΔI =If – I₀  

ΔI = - 12 – (-12)

ΔI = -0 N s

3 0
3 years ago
Calculate the total displacement of a mouse walking along a ruler, if it begins at the x=5cm, and then does the following: It wa
Lana71 [14]
<span>To begin, the mouse walks from 5 to 12 cm, for a displacement of 7 cm. Next, it walks 8 cm in the opposite direction, for a total displacement of (7 + [-8]) or (-1) cm. This leaves the mouse on 4 cm, and then it walks from there to the 7cm location, for a displacement of 7-4 or +3 cm. Adding 3cm to -1cm gives a final displacement of +2cm.</span>
6 0
3 years ago
Other questions:
  • A satellite dish is in the shape of a parabolic surface. Signals coming from a satellite strike the surface of the dish and are
    14·1 answer
  • Newton’s Second Law establishes the relationship between mass, net applied force, and acceleration given by F=ma. Consider a 4 k
    10·1 answer
  • Which structure is responsible for breaking down sugar molecules in order to supply energy to the cell? A B C D
    9·1 answer
  • Two 4.0-cm-diameter aluminum electrodes are spaced 0.50 mm apart. the electrodes are connected to a 100 v battery. part a what i
    6·1 answer
  • Is freezing outside on a cold day conduction convection or radiation?
    14·2 answers
  • A truck travels at a speed of 40 mph. How long does it take to travel<br> 240 miles?
    5·1 answer
  • 2.<br> The inertia of an object depends on its
    12·1 answer
  • 1 Table Exercise the object released from atop of building house of heigh 10m . Calculaie a final velocity if it time is 4s​
    11·1 answer
  • What is its time interval between the release of the ball and the time it reaches its maximum height? Its initial vertical speed
    11·1 answer
  • The pressure at the bottom of a jug filled with water does NOT depend on the
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!