Answer:
50m; 0m/s.
Explanation:
Given the following data;
Initial velocity = 20m/s
Acceleration, a = - 4m/s²
Time, t = 5secs
To find the displacement, we would use the second equation of motion;

Substituting into the equation, we have;



S = 50m
Next, to find the final velocity, we would use the third equation of motion;
Where;
- V represents the final velocity measured in meter per seconds.
- U represents the initial velocity measured in meter per seconds.
- a represents acceleration measured in meters per seconds square.
<em>Substituting into the equation, we have;</em>
V = 0m/s
<em>Therefore, the displacement of the bus is 50m and its final velocity is 0m/s.</em>
Answer:
true
Explanation:
this is because potienal energy is energy that is stored, and kinetic is energy being used, as kinetic is used, potential is also being used.
Answer:
1066.67 m
Explanation:
Given:
v₀ = 96 km/h = 26.67 m/s
v = 48 km/h = 13.33 m/s
Δx = 800 m
Find: a
v² = v₀² + 2aΔx
(13.33 m/s)² = (26.67 m/s)² + 2a (800 m)
a = -0.333 m/s²
Given:
v₀ = 26.67 m/s
v = 0 m/s
a = -0.333 m/s²
Find: Δx
v² = v₀² + 2aΔx
(0 m/s)² = (26.67 m/s)² + 2 (-0.333 m/s²) Δx
Δx = 1066.67 m
Round as needed.
Heat
You can usually warm something by adding energy. The added energy can be from light, electricity, friction, a chemical reaction, nuclear reaction, or any other kind of energy. When first added to a substance, energy might be concentrated in one atom, but this one will soon bump into others and spread the energy. Eventually, every atom or molecule in the substance will move a bit faster. When the added energy is spread throughout a substance, it is then called heat energy, thermal energy, or, simply heat. All three terms mean the same thing. Heat is a form of energy, so it has the units of energy. In the SI system, this is Joules. Many other units to measure thermal energy are in common use. Calories and BTU's are common heat units.
Temperature
You cannot measure heat directly, but you can detect its effect on a substance. Changes in heat can usually be detected as changes in temperature. Usually, when you add energy to a bunch of atoms they move faster and get hotter. Similarly, if you remove energy from a bunch of atoms, they usually move less and get cooler.