Answer:
The answer is 4200 J.
Explanation:
The formula of work done is, W = F×D where F is the force of an object and D is the distance. Then you just substitute the values into the equation :
W = F×D
F = 42N
D = 100m
W = 42 × 100
= 4200 J
Here we can use coulomb's law to find the force between two charges
As per coulombs law
]tex]F = \frac{kq_1q_2}{r^2}[/tex]
here we have




now by using the above equation we have


so here the force between two charges is of above magnitude and this will be repulsive force between them as both charges are of same sign.
D), increases. The object absorbs light energy which in turn (energy is energy) usually involves absorbing heat as well.
Answer:
Just go broom broom on ya teacher
Explanation:
cause why not
Let v = the running speed
After running at constant speed for 26 min, the distance traveled is
d = (v m/min)*(26 min) = 26v m
Because there are 1500 m to go, the distance traveled is
10000 - 1500 = 8500 m
The running speed is
v = (8500 m)/(26 min) = 326.9 m/min
In km/h, the speed is
v = (0.3269 km/min)*(60 min/h) = 19.6 km/h
Answer: The running speed is 19.6 km/h