Base on my research, within 2 hours you have a number of atoms which remain.
N= N0*2^(-t/6.020 = N= N0*2^-0.33223= 07943 N0
So, the number of atoms that are being disintegrated is N0-N=N0*(1-0.79430)=0.2057 N0
It must be equal to 15 mCi = 15*3.7*10^7= 5.55*10^8 atoms
N0= 5.55*10*8/0.2057 = 2.698*10^9 atoms
Therefore, 2.698*10^9 atoms is the number of N0
Answer:
True. mark me as Brilliant
Answer:
300 meters per second. That's equal to about 670 miles per hour.
Explanation:
Not only are air particles incredibly small, they are always moving. And they move fast. At room temperature, they are going about 300 meters per second. That's equal to about 670 miles per hour.
I don't think so it would be some where between 9 and 10
Answer:
the longest wavelength of incident sunlight that can eject an electron from the platinum is 233 nm
Explanation:
Given data
Φ = 5.32 eV
to find out
the longest wavelength
solution
we know that
hf = k(maximum) +Ф ...............1
here we consider k(maximum ) will be zero because photon wavelength max when low photon energy
so hf = 0
and hc/ λ = +Ф
so λ = hc/Ф ................2
now put value hc = 1240 ev nm and Φ = 5.32 eV
so hc = 1240 / 5.32
hc = 233 nm
the longest wavelength of incident sunlight that can eject an electron from the platinum is 233 nm