Answer: 5.8kg
Explanation:
F - mg sinΦ = ma
Given that
M=?
g= 9.8
Φ= 30
a= 2
F= 40 then
40 - 9.8 * m * sin 30 = 2 * m
40 = 2 * m + 9.8 * m * sin 30
40 = (2 + 9.8 * sin 30) m
m = 40 / (2 + 9.8 * 0.5)
m = 40 / (2 + 4.9)
m = 40 / 6.9
m = 5.797kg
m = 5.8kg
Answer:
E. existence of unpaired electrons in the outermost shell.
Explanation:
D = 110 m, t = 5 s
v o = 110 cs : 5 m = 22 m/s
-------------------------------------
v = v o - a t
v = 0 m/s, v o = 22 m/s, t = 4 s
0 = 22 - 4 a
4 a = 22
a = 22 : 4
a = 5.5 m/s²
g = 9.80 m/s²
9.80 : 5.5 = 0.56
Answer:
The magnitude of its acceleration is 5.5 m/s or 0.56 g.
We have the following equation for height:
h (t) = (1/2) * (a) * t ^ 2 + vo * t + h0
Where,
a: acceleration
vo: initial speed
h0: initial height.
The value of the acceleration is:
a = -g = -9.8 m / s ^ 2
For t = 0 we have:
h (0) = (1/2) * (a) * 0 ^ 2 + vo * 0 + h0
h (0) = h0
h0 = 0 (reference system equal to zero when the ball is hit).
For t = 5.8 we have:
h (5.8) = (1/2) * (- 9.8) * (5.8) ^ 2 + vo * (5.8) + 0
(1/2) * (- 9.8) * (5.8) ^ 2 + vo * (5.8) + 0 = 0
vo = (1/2) * (9.8) * (5.8)
vo = 28.42
Substituting values we have:
h (t) = (1/2) * (a) * t ^ 2 + vo * t + h0
h (t) = (1/2) * (- 9.8) * t ^ 2 + 28.42 * t + 0
Rewriting:
h (t) = -4.9 * t ^ 2 + 28.42 * t
The maximum height occurs when:
h '(t) = -9.8 * t + 28.42
-9.8 * t + 28.42 = 0
t = 28.42 / 9.8
t = 2.9 seconds.
Answer:
The ball was at maximum elevation when:
t = 2.9 seconds.