Answer:
2.1406 ×
m/sec
Explanation:
we know that energy is always conserved
so from the law of energy conservation

here V is the potential difference
we know that mass of proton = 1.67×
kg
we have given speed =50000m/sec
so potential difference 
now mass of electron =9.11×
so for electron

so the velocity of electron will be 2.1406×
m/sec
N2+3H2->2NH3
When 3 moles of H2 react, they produce 2 moles of NH3
3 moles of H2 have a mass of 2.02 g
2 moles of NH2 have a mass of 17.0 g
So when 2.02 g H2 react, they produce 17.0 g NH3
If 26.3g H2 react with a yield of 100%, we expect…
2.02g H2_____17.0gNH3
26.3g H2_____x=221gNH3
So now let’s calculate the percentage:
221gNH3_________100%
79.0gNH3_________x=79.0*100/221=35.7%
Answer:18.29m/s^2
Explanation:
Centripetal acceleration=(velocity)^2÷radius
Centripetal acceleration=(32^2)/56
Centripetal acceleration=(32×32)/56
Centripetal acceleration=1024/56
Centripetal acceleration=18.29m/s^2
Answer: shrink and heat
Stars similar to our Sun use hydrogen as fuel, creating helium in the process of <u>nuclear fusion.
</u>
Now when the hydrogen is used up, the core of the star reaches such a temperature that begins to transform the <u>helium into carbon</u><u>.</u> That is, the core heats up more due to the continuous fusion reactions and shrinks because it will not have enough pressure to maintain its size.
Answer:
Explanation:
The inclined plane
An inclined plane consists of a sloping surface; it is used for raising heavy bodies. The plane offers a mechanical advantage in that the force required to move an object up the incline is less than the weight being raised (discounting friction). The steeper the slope, or incline, the more nearly the required force approaches the actual weight. Expressed mathematically, the force F required to move a block D up an inclined plane without friction is equal to its weight W times the sine of the angle the inclined plane makes with the horizontal (θ). The equation is F = W sin θ.
The lever
A lever is a bar or board that rests on a support called a fulcrum. A downward force exerted on one end of the lever can be transferred and increased in an upward direction at the other end, allowing a small force to lift a heavy weight.
The wedge
A wedge is an object that tapers to a thin edge. Pushing the wedge in one direction creates a force in a sideways direction. It is usually made of metal or wood and is used for splitting, lifting, or tightening, as in securing a hammer head onto its handle.
The wheel and axle
A wheel and axle is made up of a circular frame (the wheel) that revolves on a shaft or rod (the axle). In its earliest form it was probably used for raising weights or water buckets from wells.
Its principle of operation is best explained by way of a device with a large gear and a small gear attached to the same shaft. The tendency of a force, F, applied at the radius R on the large gear to turn the shaft is sufficient to overcome the larger force W at the radius r on the small gear. The force amplification, or mechanical advantage, is equal to the ratio of the two forces (W:F) and also equal to the ratio of the radii of the two gears (R:r)