Refractive index (symbol n) is defined as the ratio of the velocity of light in a vacuum (symbol c) to the velocity of light in a medium (symbol v). The equation is n=c/v. In order to obtain the speed of light in carbon disulphide the above equation needs to be rearranged to make v the subject. This yields v=c/n. Plugging the numbers in yields a speed to 1.84x10^8 metres per second.
The time must be measured with respect to gravity. As it falls, it has free fall that is the force acting on it will be the gravity.With the distance in account, d = 1/2 gt²
t = √(2d/g)
Answer:
Greenhouse gases keep our planet livable by holding onto some of Earth's heat energy so that it doesn't all escape into space. This heat trapping is known as the greenhouse effect. Just as too little greenhouse gas makes Earth too cold, too much greenhouse gas makes Earth too warm.
Answer:
I may not have the answer so i'll just give up some hints.
Multiply the time by the acceleration due to gravity to find the velocity when the object hits the ground. If it takes 9.9 seconds for the object to hit the ground, its velocity is (1.01 s)*(9.8 m/s^2), or 9.9 m/s. Choose how long the object is falling. In this example, we will use the time of 8 seconds. Calculate the final free fall speed (just before hitting the ground) with the formula v = v₀ + gt = 0 + 9.80665 * 8 = 78.45 m/s . Find the free fall distance using the equation s = (1/2)gt² = 0.5 * 9.80665 * 8² = 313.8 m .h = 0.5 * 9.8 * (1.5)^2 = 11m. b. V = gt = 9.8 * 1.5 = 14.7m/s. A feather and brick dropped together. Air resistance causes the feather to fall more slowly. If a feather and a brick were dropped together in a vacuum—that is, an area from which all air has been removed—they would fall at the same rate, and hit the ground at the same time.When an object's point is taller the thing that is going down it will go faster than when the point is lower. EXAMPLE: The object is the tennis ball if you drop it down the higher hill it will be faster than if you drop it down a shorter hill. In other words, if two objects are the same size but one is heavier, the heavier one has greater density than the lighter object. Therefore, when both objects are dropped from the same height and at the same time, the heavier object should hit the ground before the lighter one.
I hope my little bit (big you may say) hint help you with your question.
<h2>
Answer: The spreading of waves behind an aperture ismore for long wavelengths and less for short wavelengths</h2>
Here we are talking about Diffraction and, in fact, waves diffract the most when their wavelength is about the same size of the gap or aperture.
Diffraction happens when a wave (mechanical or electromagnetic wave) meets an obstacle or a slit .When this occurs, <u>the wave bends around the corners of the obstacle or passes through the opening of the slit that acts as an obstacle, forming multiple patterns with the shape of the aperture of the slit.
</u>
<u />
Note that the principal condition for the occurrence of this phenomena is that the obstacle must be comparable in size (similar size) to the size of the wavelength.
In other words, when the gap (or slit) size is larger than the wavelength, the wave passes through the gap and does not spread out much on the other side, but when the gap size is equal to the wavelength, maximum diffraction occurs and the waves spread out greatly.
This means the smaller the slit or obstacle (diffracting object), the wider the resulting diffraction pattern, and the greater the obstacle, the narrower de resulting patter.